-
- PythonScapy网络扫描教程详解
- 使用Scapy制作网络拓扑扫描的核心是结合ARP扫描和ICMPtraceroute技术,先通过ARP请求发现局域网内活跃设备,再利用TTL递增的ICMP包探测外部路径;2.Scapy的优势在于可自定义构造和解析任意协议层数据包,支持灵活探测、流量嗅探及多协议组合,适用于复杂网络环境;3.实际扫描中常见挑战包括防火墙拦截、权限不足、扫描效率低以及结果不完整,需采用多种扫描策略、控制速率并确保合法授权;4.构建可视化拓扑图需整合扫描数据为节点与边,利用NetworkX、Pyvis或Graphviz等工具生成交
- 文章 · python教程 | 3个月前 | 可视化 Scapy 网络拓扑扫描 ARP扫描 ICMPtraceroute 250浏览 收藏
-
- PythonGIS数据处理:Fiona库入门指南
- Fiona是一个基于GDAL的Python库,专用于读写矢量地理空间数据。①它支持Shapefile、GeoJSON、GPKG等格式,适合精细控制数据结构与流程的场景;②安装推荐使用conda或pip,优先conda以避免依赖问题;③读取数据通过fiona.open()函数实现,可访问feature的geometry与properties;④写入数据需定义schema,包括几何类型与属性字段,并指定driver与crs;⑤注意事项包括手动处理投影转换、检查输出路径、字段名限制、多图层处理及输出文件完整性。
- 文章 · python教程 | 3个月前 | 434浏览 收藏
-
- Python连接MySQL教程,PyMySQL实战详解
- Python连接MySQL数据库最常用的是PyMySQL库,主要步骤为:1.安装库(pipinstallPyMySQL);2.导入库并配置连接参数(host、port、user、password、db、charset等);3.使用pymysql.connect()建立连接;4.通过connection.cursor()获取游标;5.执行SQL操作(增删改查);6.修改操作需调用connection.commit()提交事务;7.操作完成后在finally块中关闭游标和连接。常见问题包括编码不一致导致中文乱
- 文章 · python教程 | 3个月前 | mysql 数据库连接 连接池 参数化查询 pymysql 490浏览 收藏
-
- Python数据聚类分析技巧
- Python实现数据聚类分析的核心在于Scikit-learn库,常用步骤包括:1.数据准备;2.选择合适的聚类算法(如K-Means、DBSCAN、层次聚类等);3.模型训练与预测;4.结果评估与可视化。K-Means适合球形簇且需预设K值,DBSCAN可发现任意形状簇并识别噪声,层次聚类无需指定簇数但计算复杂度高。评估聚类效果可采用轮廓系数、惯性值、DB指数等内部指标,也可结合业务价值判断聚类的可解释性、可操作性与稳定性。聚类广泛应用于客户细分、市场研究、异常检测、文本聚类、图像分割和生物信息学等领域
- 文章 · python教程 | 3个月前 | Python scikit-learn 聚类算法 聚类分析 结果评估 303浏览 收藏
-
- PythonElementTree解析XML教程
- Python处理XML方便因内置xml.etree.ElementTree模块,其将XML文档视为树结构,每个节点为元素;读取用ET.parse()加载文件并获取根节点;遍历通过循环子节点或find()/findall()查找特定节点;修改内容可直接赋值文本并用write()保存更改。
- 文章 · python教程 | 3个月前 | 330浏览 收藏
-
- Python计算累积统计量的方法有哪些?
- 累积统计量是逐步计算统计指标的方法,常见应用包括金融分析与销售趋势追踪。使用Python的numpy和pandas库,可通过cumsum()、cumprod()及expanding().mean()等函数便捷实现。例如,pandas中的cumsum()可计算累积销售额,帮助分析销售趋势。处理缺失值时,需先填充或删除,如使用fillna()填充均值后再计算。此外,通过pandas的expanding()结合apply()可自定义计算逻辑,如加权累积和,实现灵活的数据分析需求。
- 文章 · python教程 | 3个月前 | Python 数据分析 Numpy Pandas 累积统计量 104浏览 收藏
-
- Python如何调用并运行另一个文件
- 本文旨在指导开发者如何在Python中从一个Python脚本触发并执行另一个Python脚本,并继续执行调用脚本的剩余代码。我们将探讨使用subprocess模块的不同方法,包括同步和异步执行,并提供详细的代码示例和注意事项,帮助读者选择最适合其应用场景的方案。
- 文章 · python教程 | 3个月前 | 186浏览 收藏
-
- Python内存优化:\_slots\_实用技巧详解
- 使用__slots__能有效减少Python对象内存占用,特别是在创建大量小对象时。1.__slots__通过禁止实例创建__dict__,将属性存储于固定内存空间,从而降低每个实例的内存开销;2.在继承中,子类必须也定义__slots__才能避免生成__dict__,否则无法享受内存优化;3.多重继承时若任一父类未定义__slots__,子类将被迫拥有__dict__;4.使用__slots__后无法动态添加属性,且默认不支持弱引用,需显式添加'__weakref__';5.调试困难、序列化兼容性风险及
- 文章 · python教程 | 3个月前 | 继承 内存优化 __slots__ Python对象 __dict__ 476浏览 收藏
-
- PythonSocket编程入门指南
- Python网络编程核心是socket模块,通过它可直接操作TCP/UDP协议实现服务器与客户端通信。1.TCP服务器端流程:创建Socket对象→绑定IP和端口→监听连接→接受客户端连接→接收/发送数据→关闭连接。2.TCP客户端流程:创建Socket对象→连接服务器→发送/接收数据→关闭连接。3.数据传输需注意:sendall()确保完整发送;recv()需处理粘包问题,应用层可通过“长度+数据”协议解决。4.编码解码需统一使用encode()/decode()。5.并发处理可通过多线程、多进程或I/
- 文章 · python教程 | 3个月前 | Python TCP 网络编程 并发 socket 325浏览 收藏
-
- GoogleColab导入jumpy失败解决方法
- 本文旨在解决在使用GoogleColab安装Brax后,无法导入jumpy模块的问题。通过独立安装brax-jumpy模块,并使用importjumpyas...语句,可以有效解决该导入错误,确保Brax库的正常使用。
- 文章 · python教程 | 3个月前 | 216浏览 收藏
-
- Python自动化报表与数据可视化教程
- 如何用Python做自动化报表?1.使用pandas进行数据处理,利用DataFrame结构清洗、转换、筛选和聚合数据;2.选择matplotlib或seaborn进行静态图表可视化,或使用plotly、bokeh生成交互式图表;3.通过schedule库设置定时任务,或使用操作系统自带的定时工具(如Linux的crontab、Windows任务计划)实现报表自动生成;4.使用smtplib或更简便的yagmail库将报表通过邮件自动发送至指定接收人;5.通过try...except语句捕获错误,结合lo
- 文章 · python教程 | 3个月前 | Python 错误处理 数据可视化 定时任务 自动化报表 176浏览 收藏
-
- Python爬虫实战:requests与BeautifulSoup教程
- 使用Python实现网页爬虫的核心流程包括:发起请求、获取响应、解析HTML、提取数据;2.选择requests和BeautifulSoup组合的原因是其学习曲线平缓、功能强大且灵活,requests库封装了HTTP请求的复杂性,BeautifulSoup能高效解析不规范的HTML结构;3.应对反爬机制的方法包括:设置浏览器User-Agent头模拟真实访问、使用time.sleep()控制请求频率以避免IP被封、利用requests.Session()管理登录状态和Cookies;4.爬取数据的存储方式
- 文章 · python教程 | 3个月前 | 数据存储 Requests beautifulsoup Python爬虫 反爬机制 471浏览 收藏
-
- Python+ELK搭建日志异常检测系统
- 选择合适的异常检测算法需根据数据特点和业务需求,数据量小且模式简单时用基于统计的模型,数据量大且复杂时用机器学习模型,处理时序数据则选用深度学习模型;2.优化模型性能可通过特征选择提升准确率、参数调优增强模型表现、模型集成提高鲁棒性、数据清洗减少噪声;3.处理误报和漏报可调整检测阈值平衡比例、引入人工审核过滤结果、建立用户反馈机制持续改进模型;4.与现有监控系统集成可通过API或消息队列将异常结果实时推送;5.保证系统可靠性需监控资源使用情况、记录运行日志便于排查、设计备份与冗余等容错机制;6.评估系统效
- 文章 · python教程 | 3个月前 | Python elk 特征工程 异常检测模型 日志异常检测 448浏览 收藏
-
- systemd管理dbus服务配置方法
- 本文旨在解决systemd管理的守护进程无法提供DBus服务的问题。通过分析错误信息、理解sessionbus和systembus的区别,以及提供详细的配置步骤和示例代码,帮助读者正确配置systemd服务,使其能够成功注册并提供DBus服务,实现进程间的有效通信。
- 文章 · python教程 | 3个月前 | 382浏览 收藏
-
- Python中float类型的作用与用法
- 在Python中,float代表浮点数类型,用于表示小数。1)浮点数采用IEEE754标准,可能导致精度丢失。2)可以使用decimal模块进行高精度计算。3)浮点数比较应使用math.isclose()函数。4)避免用浮点数进行财务计算,建议使用decimal或整数。
- 文章 · python教程 | 3个月前 | 501浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3200次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3413次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3443次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4551次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3821次使用

