本地运行GGUF模型教程详解
想在本地体验开源大语言模型(LLM)的强大能力吗?本文档为你提供一份详尽的教程,手把手教你如何在CPU上,利用`llama-cpp-python`库运行GGUF格式的量化模型,例如Llama 3、Mistral或Zephyr等,无需依赖ctransformers。本教程涵盖了从环境配置、模型下载,到推理代码编写的全过程,并提供实用技巧和常见问题解答,助你快速上手。通过`llama-cpp-python`,你可以充分利用CPU资源进行LLM推理,并通过调整参数,在性能和内存使用之间找到最佳平衡点,轻松驾驭各种开源LLM模型。无论你是开发者还是AI爱好者,都能从中受益,开启你的本地LLM探索之旅。

本文档旨在指导读者如何在 CPU 上使用 llama-cpp-python 库运行任何量化的 GGUF 格式的开源 LLM 模型,例如 Llama 3、Mistral 或 Zephyr 等,而无需依赖 ctransformers 库支持。 本教程涵盖了环境配置、模型下载、推理代码编写以及一些实用技巧,帮助读者快速上手并解决常见问题。
使用 llama-cpp-python 进行 CPU 推理
llama-cpp-python 是一个流行的 Python 库,它基于 llama.cpp,允许在 CPU 上运行量化的 LLM 模型。它易于使用,并且通常是第一个支持新型号量化版本的库之一。
1. 环境配置
首先,需要安装 llama-cpp-python 和 huggingface_hub。 llama-cpp-python 用于加载和运行模型,而 huggingface_hub 用于从 Hugging Face Model Hub 下载模型。
在终端中运行以下命令:
pip install llama-cpp-python pip install huggingface_hub
请注意,上述命令安装的是 CPU 版本的 llama-cpp-python。 如果您想使用 GPU 加速,则需要进行额外的配置,具体步骤不在本文档的讨论范围内。
2. 模型下载
使用 huggingface_hub 从 Hugging Face Model Hub 下载 GGUF 模型。以下代码示例演示了如何下载 Mixtral-8x7B-Instruct-v0.1 模型:
from huggingface_hub import hf_hub_download
model_name = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
model_file = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"
model_path = hf_hub_download(model_name, filename=model_file)
print(f"Model downloaded to: {model_path}")这段代码将下载 mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf 文件到本地。 Q4_K_M 表示 4-bit 量化模型,您可以根据需要选择其他量化级别。
3. 模型加载与推理
下载模型后,可以使用 llama-cpp-python 加载并运行模型。以下代码示例展示了如何加载模型并生成文本:
from llama_cpp import Llama
llm = Llama(
model_path=model_path,
n_ctx=16000, # Context length to use
n_threads=32, # Number of CPU threads to use
n_gpu_layers=0 # Number of model layers to offload to GPU
)
generation_kwargs = {
"max_tokens": 20000,
"stop": ["</s>"],
"echo": False, # Echo the prompt in the output
"top_k": 1 # This is essentially greedy decoding, since the model will always return the highest-probability token. Set this value > 1 for sampling decoding
}
prompt = "The meaning of life is "
res = llm(prompt, **generation_kwargs)
print(res["choices"][0]["text"])这段代码首先使用 Llama 类加载模型,并设置上下文长度 (n_ctx)、线程数 (n_threads) 和 GPU 层数 (n_gpu_layers)。 由于我们要在 CPU 上运行模型,因此将 n_gpu_layers 设置为 0。
然后,定义生成参数 generation_kwargs,例如最大 token 数 (max_tokens)、停止词 (stop)、是否回显提示 (echo) 和 top-k 值 (top_k)。
最后,使用 llm 对象运行推理,并将结果打印到控制台。
4. 模型选择
Mixtral-8x7B 是一个相对较大的模型,可能需要大量的内存才能运行。 如果您的计算机内存有限,可以尝试使用较小的模型,例如 Llama-2-13B 或 Mistral-7B。
以下是一些较小模型的示例:
- model_name="TheBloke/Llama-2-13B-chat-GGUF"; model_file="llama-2-13b-chat.Q4_K_M.gguf"
- model_name="TheBloke/Mistral-7B-OpenOrca-GGUF"; model_file="mistral-7b-openorca.Q4_K_M.gguf"
注意事项
- 确保您的计算机具有足够的内存来运行模型。
- 根据您的 CPU 核心数调整 n_threads 参数。
- 您可以尝试不同的量化级别,以在性能和内存使用之间找到平衡。
- top_k=1 实际上是贪婪解码,模型总是返回最高概率的 token。 为了获得更多样化的输出,请将此值设置为大于 1 的值,以启用采样解码。
总结
本教程介绍了如何使用 llama-cpp-python 在 CPU 上运行量化的 GGUF 模型。 通过遵循这些步骤,您可以轻松地在本地运行各种开源 LLM 模型,并探索它们的强大功能。请记住,选择合适的模型和调整参数对于获得最佳性能至关重要。
终于介绍完啦!小伙伴们,这篇关于《本地运行GGUF模型教程详解》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
微博被拉黑怎么查?3招快速判断方法
- 上一篇
- 微博被拉黑怎么查?3招快速判断方法
- 下一篇
- CSS元素平滑缩放实现技巧
-
- 文章 · python教程 | 6小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 8小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 9小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3193次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3405次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3436次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4543次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3814次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

