-
- Python中eval的作用与使用详解
- eval函数在Python中可以将字符串形式的表达式解析并执行,但使用时需谨慎。1)基本用法是将字符串表达式直接执行,如eval("2+2")。2)存在安全风险,切勿直接使用用户输入,因为可能执行恶意代码。3)性能上,eval较慢,可用compile提高,如compile("2+2","<string>","eval")。4)动态创建对象或调用方法时可用,但需确保代码可控和安全。总之,eval强大但需谨慎使用。
- 文章 · python教程 | 1星期前 | 466浏览 收藏
-
- 正则匹配XMLHTML标签技巧
- 用正则表达式匹配XML或HTML标签适用于简单场景,但不适用于复杂结构。1.匹配开始标签可用<([a-zA-Z]+)(\s+[^>]*)?>;2.匹配闭合标签可用<\/([a-zA-Z]+)\s*>;3.匹配整个标签对及其内容可用<([a-zA-Z]+)(\s+[^>]*)?>(.*?)<\/\1\s*>;4.处理自闭合标签可用<([a-zA-Z]+)(\s+[^>]*)?\s*\/?>。注意:正则无法正确处理嵌套结构,推荐使用
- 文章 · python教程 | 1星期前 | 466浏览 收藏
-
- PyCharm解释器功能全解析
- PyCharm解释器用于运行和调试Python代码。1)它将代码转换为计算机可执行的指令,支持多种Python版本。2)提供代码补全和错误检查,提高编写效率和错误修复速度。3)调试功能支持设置断点和变量检查,有助于解决复杂问题。4)管理虚拟环境,确保不同项目依赖库不冲突。5)性能分析工具帮助优化代码执行效率。
- 文章 · python教程 | 6天前 | 466浏览 收藏
-
- try-except-else-finally用法详解
- else块在try-except-else-finally结构中的关键作用是:1.提高代码清晰性,明确标识仅在try成功时执行的逻辑;2.避免异常误捕获,防止将else中的错误与try中的异常混为一谈;3.增强可读性,使try块聚焦潜在异常代码,else处理依赖成功执行的后续操作。例如在文件读取场景中,try负责打开和读取文件,except处理异常,else用于返回结果并确认成功,finally确保资源释放,从而实现职责分离、逻辑清晰的异常处理机制。
- 文章 · python教程 | 5天前 | 异常处理 多线程 资源清理 try-except-else-finally else块 466浏览 收藏
-
- LightGBM树模型异常检测详解
- LightGBM可通过残差分析检测异常,其核心是训练模型拟合正常数据并识别预测误差大的数据点。1.数据准备:需收集并清洗数据以保证质量;2.特征工程:选择合适特征并优化组合;3.模型训练:使用LightGBM进行回归或分类任务以拟合正常模式;4.异常评分:计算各数据点的预测残差,残差越大越可能是异常点;5.阈值设定:基于验证集确定区分正常与异常的阈值。该方法优势在于高效处理高维和大规模数据、具备特征重要性评估能力,适用于金融欺诈检测、网络安全和工业故障诊断等场景。性能优化可通过调整学习率、树深度、最小样本
- 文章 · python教程 | 3天前 | 树模型 异常检测 特征工程 残差分析 LightGBM 466浏览 收藏
-
- Pydantic字段别名与原名互用技巧
- Pydantic模型默认支持通过别名进行数据输入,但无法直接通过别名访问已创建对象的字段。本文将详细探讨这一限制,并提供一种利用Python的__getattr__魔术方法实现别名和原始字段名互换访问的解决方案。通过自定义__getattr__,模型可以动态查找并返回与别名关联的实际字段值,从而提高数据访问的灵活性,但需注意IDE智能提示的局限性。
- 文章 · python教程 | 1天前 | 466浏览 收藏
-
- Python中文分词实战:jieba库使用教程
- Python中处理中文分词常用jieba库,1.安装使用pipinstalljieba并调用jieba.cut()进行精确或全模式分词;2.通过jieba.load_userdict()加载自定义词典提升准确性;3.分词后可转列表、过滤停用词优化结果;4.支持关键词提取和词性标注功能,分别用jieba.analyse.extract_tags()和jieba.posseg模块实现。
- 文章 · python教程 | 1天前 | 466浏览 收藏
-
- Python分词实战:jieba库使用教程
- Python中处理中文分词常用jieba库,1.安装使用pipinstalljieba并调用jieba.cut()进行精确或全模式分词;2.通过jieba.load_userdict()加载自定义词典提升准确性;3.分词后可转列表、过滤停用词优化结果;4.支持关键词提取和词性标注功能,分别用jieba.analyse.extract_tags()和jieba.posseg模块实现。
- 文章 · python教程 | 3星期前 | 465浏览 收藏
-
- Pythongroupby进阶技巧全解析
- Python中实现数据分组统计的核心方法是Pandas库的groupby(),其核心机制为“Split-Apply-Combine”。1.首先使用groupby()按一个或多个列分组;2.然后对每组应用聚合函数(如sum(),mean(),count()等)进行计算;3.最后将结果合并成一个新的DataFrame或Series。通过groupby()可以实现单列分组、多列分组、多种聚合函数组合、自定义聚合函数、重置索引等操作,还能结合agg()实现多层聚合分析,配合apply()和transform()可
- 文章 · python教程 | 3星期前 | 465浏览 收藏
-
- PyCharm开发语言解析及Python实现揭秘
- PyCharm是用Java开发的。具体来说,PyCharm利用Java的生态系统和库构建,基于IntelliJIDEA平台,集成了Python解释器,支持跨平台运行,并通过多线程和异步处理优化性能。
- 文章 · python教程 | 3星期前 | 465浏览 收藏
-
- Python时间序列分析教程:statsmodels实战指南
- 使用statsmodels处理时间序列需先设定时间索引,1.读取数据并转换为DatetimeIndex;2.检查缺失与连续性,进行重采样;3.用seasonal_decompose分解趋势、季节性与残差;4.选择SARIMAX建模,设置order与seasonal_order参数;5.拟合模型后预测未来数据;6.注意缺失值插值、平稳性检验及模型评估。全过程需重视数据预处理与参数调优以提高预测准确性。
- 文章 · python教程 | 3星期前 | 465浏览 收藏
-
- Python金融数据处理:Pandas实战教程
- Pandas高效处理金融数据的核心在于掌握其数据结构和函数并应用于实际场景。1.高效读取数据需根据来源选择合适函数如read_csv、read_sql等并设置参数;2.数据清洗需处理缺失值用fillna填充、异常值用IQR或Z-score检测并删除、重复值用drop_duplicates清除;3.时间序列分析可用resample重采样、rolling计算移动平均、diff进行差分;4.财务数据分析通过pivot_table创建透视表并计算ROE等指标;5.风险管理需计算波动率、夏普比率和最大回撤以评估投资
- 文章 · python教程 | 1星期前 | Python 金融数据分析 时间序列分析 风险管理 Pandas 465浏览 收藏
-
- PyCaret异常检测教程:低代码快速实现
- PyCaret通过高度抽象的API解决了异常检测中的多个痛点,首先它自动化了数据预处理,包括缺失值填充、特征编码和缩放等步骤,其次支持快速模型选择与比较,内置IsolationForest、One-ClassSVM、LocalOutlierFactor等多种算法,允许用户轻松尝试不同模型并找到最适合当前数据的方案,此外PyCaret还简化了参数调优过程,减少了代码量,提升了开发效率,同时提供可视化工具帮助理解模型结果并支持模型保存与部署。
- 文章 · python教程 | 1星期前 | 自动化 低代码 异常检测 数据预处理 PyCaret 465浏览 收藏
-
- 字符串处理方法:分割、拼接与替换详解
- 在Python中,字符串分割使用split()方法,拼接使用+运算符或join()方法,替换使用replace()方法。1.分割:text.split(",")将字符串按逗号分隔。2.拼接:"".join(words)或"Hello,"+name合并字符串。3.替换:text.replace("World","Python")替换指定内容。掌握这些操作可提升代码处理效率和可维护性。
- 文章 · python教程 | 4星期前 | 464浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 107次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 99次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 119次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 111次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 116次使用