用7500条轨迹数据训练,CMU、Meta让机器人达到全能的厅堂与厨房水平
小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《用7500条轨迹数据训练,CMU、Meta让机器人达到全能的厅堂与厨房水平》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!
仅仅通过使用7500条轨迹数据进行训练,这个机器人可以展示出12种不同的操作技能,在38个任务中,不仅仅限于拾取和推动,还包括关节对象操纵和物体重新定位。而且,这些技能还可以应用于数百个不同的未知情境,包括未知物体、未知任务,甚至完全未知的厨房环境。这样的机器人真的很酷吧!
数十年来,创造一个能够在不同环境中操纵任意物体的机器人一直是一个遥不可及的目标。其中一个原因是缺乏多样化的机器人数据集,无法训练这样的智能体,同时也缺乏能够生成此类数据集的通用智能体
为了克服这个难题,来自卡内基梅隆大学和Meta AI的作者花费了两年时间开发了一个通用的RoboAgent。他们的主要目标是开发一种高效的范例,可以在数据有限的情况下训练一个能够具备多种技能的通用智能体,并将这些技能推广应用于各种未知情境
RoboAgent 由以下模块化构成 :
- RoboPen - 一个采用通用硬件构建的分布式机器人基础设施,能够长期不间断运行;
- RoboHive - 一个统一的框架,用于在模拟和真实世界操作中进行机器人学习;
- RoboSet - 一个高质量的数据集,代表了各种场景中使用日常物品的多种技能;
- MT-ACT - 一种高效的语言条件多任务离线模仿学习框架,通过在现有机器人经验的基础上创建多样的语义增强集合,从而扩大了离线数据集,并采用了一种新颖的策略架构和高效的动作表示方法,在有限的数据预算下恢复出性能良好的策略。
RoboSet:多技能、多任务、多模态数据集
构建一个能够在许多不同情境下推广的机器人智能体,首先需要一个具有广泛覆盖范围的数据集。鉴于扩大规模的努力通常会有所帮助(例如,RT-1 展示了约 130,000 条机器人轨迹的结果),因此需要在数据集有限的情况下理解学习系统的效率和泛化原则,低数据情境往往会导致过拟合。因此,作者的主要目标是开发一种强大的范例,可以在低数据情境下学习可推广的通用策略,同时避免过拟合问题。
机器人学习中的技能与数据全景是一个重要的领域。在机器人学习中,技能是指机器人通过学习和训练获得的能力,可以用于执行特定的任务。这些技能的发展离不开大量的数据支持。数据是机器人学习的基础,通过分析和处理数据,机器人可以从中学习并改进自己的技能。因此,技能和数据是机器人学习中不可或缺的两个方面。只有通过不断学习和获取新的数据,机器人才能不断提升自己的技能水平,并在各种任务中展现出更高的智能和效率
用于训练 RoboAgent 的数据集 RoboSet(MT-ACT)仅包括 7,500 条轨迹(比 RT-1 的数据少 18 倍)。该数据集提前收集并保持冻结状态。该数据集由在多个任务和场景中使用商品机器人硬件(Franka-Emika 机器人配备 Robotiq 夹具)进行人类遥操作收集的高质量轨迹组成。RoboSet(MT-ACT)在几个不同的情境下稀疏地涵盖了 12 种独特技能。数据通过将日常厨房活动(如泡茶、烘焙)分为不同的子任务来收集,每个子任务代表一个独特的技能。数据集包括常见的拾取 - 放置技能,还包括接触丰富的技能,如擦拭、盖盖子,以及涉及关节物体的技能。 重写后的内容: 用于训练 RoboAgent 的数据集 RoboSet(MT-ACT)仅包括 7,500 条轨迹(比 RT-1 的数据少 18 倍)。该数据集提前收集并保持冻结状态。该数据集由在多个任务和场景中使用商品机器人硬件(Franka-Emika 机器人配备 Robotiq 夹具)进行人类遥操作收集的高质量轨迹组成。RoboSet(MT-ACT)在几个不同的情境下稀疏地涵盖了 12 种独特技能。数据通过将日常厨房活动(如泡茶、烘焙)分为不同的子任务来收集,每个子任务代表一个独特的技能。数据集包括常见的拾取 - 放置技能,还包括接触丰富的技能,如擦拭、盖盖子,以及涉及关节物体的技能
MT-ACT:多任务动作分块 Transformer
RoboAgent基于两个关键洞察在低数据情境下学习通用策略。它利用基础模型的世界先验知识以避免模式崩溃,并采用了一种新颖的高效策略表示,能够摄取高度多模态的数据
需要进行改写的内容是:1、语义增强:RoboAgent通过对RoboSet(MT-ACT)进行语义增强,将来自现有基础模型的世界先验知识注入其中。由此产生的数据集将机器人的经验与世界先验知识相结合,而无需额外的人力/机器人成本。使用SAM对目标物体进行分割,并在形状、颜色、纹理变化方面对其进行语义增强。 改写后的内容:1、语义增强:RoboAgent通过对RoboSet(MT-ACT)进行语义增强,将来自现有基础模型的世界先验知识注入其中。这样,机器人的经验和世界先验知识就能结合起来,而不需要额外的人力/机器人成本。使用SAM对目标物体进行分割,并在形状、颜色、纹理变化方面进行语义增强
2、高效策略表示:由此产生的数据集是严重多模态的,包含丰富多样的技能、任务和情景。我们将动作分块方法应用于多任务设置,开发了一种新颖的高效策略表示——MT-ACT,能够在数据量较少的情况下获取高度多模态的数据集,同时避免过拟合问题
实验结果
RoboAgent的样本效率比现有方法更高
下图比较了作者提出的MT-ACT策略表示与几种模仿学习架构。作者仅使用了包括物体姿态变化和部分光照变化的环境变化。与之前的研究相似,作者将此归于L1泛化。从RoboAgent的结果可以清楚地看到,使用动作分块来建模子轨迹明显优于所有基准方法,从而更证明了作者提出的策略表示在样本效率学习方面的有效性
RoboAgent 在多个抽象层面上表现出色
在下图中展示了作者对不同泛化层次上测试方法的结果。同时,还通过可视化展示了泛化级别,其中L1代表物体姿态变化,L2代表多样的桌面背景和干扰因素,L3代表新颖的技能-物体组合。接下来,作者展示了每种方法在这些泛化层次上的表现。在严格的评估研究中,MT-ACT在比其他方法中表现显著优异,特别是在更困难的泛化层次(L3)上
RoboAgent 具有高度的可扩展性
作者对RoboAgent在不断增加的语义增强级别下的表现进行了评估,并在一个包含5个技能的活动中进行了评估。从下图可以看出,随着数据的增加(即每帧增强的数量增加),在所有泛化级别上的性能都有显著提升。尤其值得注意的是,在更难的任务(L3泛化)中,性能提升更为明显
RoboAgent 能够展示其技能在各种不同的活动中
好了,本文到此结束,带大家了解了《用7500条轨迹数据训练,CMU、Meta让机器人达到全能的厅堂与厨房水平》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 为什么人工智能需要在“边缘”进行部署

- 下一篇
- 让千行百业轻松使用AI,钉钉推出智能化底座AI PaaS开放平台
-
- 科技周边 · 人工智能 | 1分钟前 |
- 网约车新宠!乐道L60vs小鹏P7+空间&能耗真香指南
- 192浏览 收藏
-
- 科技周边 · 人工智能 | 19分钟前 |
- 即梦ai音量太小?手把手教你调整声音轨道教程
- 388浏览 收藏
-
- 科技周边 · 人工智能 | 37分钟前 |
- 豆包AI这么玩!手把手教你用豆包AI轻松写代码
- 244浏览 收藏
-
- 科技周边 · 人工智能 | 47分钟前 | Django web开发
- 豆包AI加持Django开发,手把手教你从零搭建Web后端
- 445浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 | AI智能体
- 手把手教你轻松玩转AI大模型(附超全实用教程)
- 154浏览 收藏
-
- 科技周边 · 人工智能 | 51分钟前 |
- 雅思口语Part1这样回答!模拟考官教学带你轻松应对
- 295浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 三分钟教程!用DeepSeek打造你的Outlook智能日程小助手
- 478浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 短视频 关键帧
- 新阅AI剪辑短视频教程:关键帧+卡点+特效全掌握!
- 292浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | AI 编程
- 手把手教学!这样用豆包AI分分钟生成代码
- 493浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 教程 DeepSeek
- 苹果亲测!DeepSeek超详细保姆级使用教程
- 371浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | Python 循环优化
- 豆包AI来啦!手把手教你用5个小技巧优化Python循环,速度飞起!
- 158浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 96次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 100次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 106次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 101次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 99次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览