当前位置:首页 > 文章列表 > Golang > Go教程 > 如何避免go的map竞态问题的方法

如何避免go的map竞态问题的方法

来源:脚本之家 2023-02-25 08:29:51 0浏览 收藏

对于一个Golang开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《如何避免go的map竞态问题的方法》,主要介绍了gomap、竞态,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!

背景

在使用go语言开发的过程中,我碰到过这样一种情况,就是代码自测没问题,代码检查没问题,上线跑了一段时间时间了也没问题,就是突然偶尔会抽风panic,导致程序所在的pod(k8s的运行docker镜像的最小单位)重启了,而程序里抛出来的异常如下

,意思是多个协程正在同时对同一个map变量进行读写,这个就涉及到go程序的竞态问题,而竞态问题也是我们日常开发中遇到比较多的情况

为什么会出现竞态问题

出现这个问题的主要原因是有多个协程在对同一个map变量进行修改,这样就可能会出现map被一个协程修改到一半的时候,然后另外一个协程就来读取了,导致读到一个“半成品”的map变量。而这个就说明一个问题,就是map类型并不是并发安全的

而并发安全的定义就是:在高并发下,进程、线程(协程)出现资源竞争,导致出现脏读,脏写,死锁等情况。

那么go语言有如下几种类型不具备并发安全:map,slice,struct,channel,string

不过奇怪的是,只有map类型发生并发竞争的时候,才会抛出fatal error,这个是无法被recover的,一定会中断程序,而这也导致程序运行的pod会被检测出异常从而重启

查了资料,有一种说法是,map大部分会被用来存配置文件,而配置文件出错可能会导致一些严重的业务问题,所以宁愿程序崩溃也要保全业务数据不会出现脏数据(只是一种说法,不用太过在意)

如何解决竞态问题

1、使用go的一些并发原语

如果需要修改的变量是程序启动之后就不需要修改的配置,那么可以使用sync.Once包来处理,这个包的作用就是限制一件事情只做一次,示例代码如下

type User struct {
   Name string
   Other map[string]interface{}
   ConfigOnce sync.Once
}
 
// InitConfigOnce
// @description "初始化配置信息,只执行一次"
// @auth yezibin 2023-01-21 15:38:09
// @param name string "description"
// @param other map[string]interface{} "description"
// @return *User "description"
func (u *User)InitConfigOnce(name string, other map[string]interface{}) *User {
   //Do包起来的方法,只会执行一次,但是必须是同一个sync.Once变量
   u.ConfigOnce.Do(func() {
      fmt.Println("ok")
      u.Name = name
      u.Other = other
   })
   return u
}
 
// GetUserConfig
// @description "打印配置文件"
// @auth yezibin 2023-01-21 15:38:36
func (u *User) GetUserConfig()  {
   fmt.Println(u)
}

2、加读写锁(RWMutex map)

出现竞态的本质是因为多个协程对同一个变量同时进行读与写,通过用锁来防止这个情况,因为我举得案例是读多写少的情况,用上读写锁性能会更好,示例代码如下

type Mmap struct {
   Data map[string]interface{}
   Mu sync.RWMutex //因为主要是配置,属于读多写少情况,所以使用读写锁提高锁的性能
}
 
 
// InitMmap
// @description "初始化读写锁的map结构体"
// @auth yezibin 2023-01-21 00:09:30
// @return *Config "description"
func InitMmap() *Mmap {
   return &Mmap{
      Data: make(map[string]interface{}),
   }
}
// Get
// @description "获取配置map数据"
// @auth yezibin 2023-01-21 00:10:09
// @param name string "description"
// @return interface{} "description"
func (m *Mmap) Get(name string) interface{} {
   m.Mu.RLock()
   defer m.Mu.RUnlock()
   return m.Data[name]
}
 
// Set
// @description "批量设置map的值"
// @auth yezibin 2023-02-05 13:08:17
// @param data map[string]interface{} "description"
func (m *Mmap) Set(data map[string]interface{})  {
   m.Mu.Lock()
   defer m.Mu.Unlock()
   for k, v := range data {
      m.Data[k] = v
   }
 
}
// SetOne
// @description "设置配置map数据"
// @auth yezibin 2023-01-21 00:10:23
// @param key string "description"
// @param val string "description"
func (m *Mmap) SetOne(key, val string)  {
   m.Mu.Lock()
   defer m.Mu.Unlock()
   m.Data[key] = val
}

建议

1、如果属于读多写少的情况,尽量选择读写锁来减少锁住的范围,从而提高读写性能

2、这里推荐将需要用来读写的map变量和锁共同组建一个struct,这样能保证读和写上的是同一把读写锁,同时也方便整合对map变量的操作

3、分片加锁

方案2中虽然加了读写锁,比加一把普通的锁要性能高些,不过锁的粒度还是大了些,当高并发来袭时,写的操作必然会阻塞读的动作,那么有没有办法将锁住的范围缩小一些呢

思路:如果给map里的每个元素加锁,每次修改只是单个元素的锁生效,其他没改到的元素就正常读,这样锁的粒度会更细,这就是分片加锁的原理

这种就是将一把“大”锁拆成一把把小锁,是一种空间换时间的方法

实现上,已经有人实现了好用的具有分片锁的map,库地址:https://github.com/orcaman/concurrent-map

import (
   cmap "github.com/orcaman/concurrent-map"
   "sync"
)
// InitCmap
// @description "初始化分片锁的map"
// @auth yezibin 2023-02-05 14:08:17
// @return *cmapConfig "description"
func InitCmap() *cmapConfig {
   return &cmapConfig{
      cmap.New(),
   }
}
 
// Set
// @description "批量往map写入元素"
// @auth yezibin 2023-02-05 14:10:02
// @param config map[string]interface{} "description"
func (c *cmapConfig) Set(config map[string]interface{})  {
   for k, v := range config{
      c.Cmap.Set(k, v)
   }
}
 
// Get
// @description "从map获取元素"
// @auth yezibin 2023-02-05 14:10:22
// @param k string "description"
// @return interface{} "description"
func (c *cmapConfig) Get(k string) interface{} {
   v, ok := c.Cmap.Get(k)
   if ok {
      return v
   } else {
      return nil
   }
}

4、go的原生可并发map

最后还会跟大家介绍一个go原生库里就有一个可并发读写的map,这个放在sync库

官方的文档中指出,在以下两个场景中使用 sync.Map,会比使用 map+RWMutex 的方式,性能要好得多:

1、只会增长的缓存系统中,一个 key 只写入一次而被读很多次;

2、多个 goroutine 为不相交的键集读、写和重写键值对。

原理:sync.Map结构里有两个字段,一个read,一个dirty。dirty包含read的所有字段,新增字段是写在dirty上,有个miss变量用户访问到read没有,但是dirty有的数据次数

  • 空间换时间。通过冗余的两个数据结构(只读的 read 字段、可写的 dirty),来减少加锁对性能的影响。对只读字段(read)的操作不需要加锁。优先从 read 字段读取、更新、删除,因为对 read 字段的读取不需要锁。
  • 动态调整。miss 次数多了之后,将 dirty 数据提升为 read,避免总是从 dirty 中加锁读取。double-checking。加锁之后先还要再检查 read 字段,确定真的不存在才操作 dirty 字段。
  • 延迟删除。删除一个键值只是打标记,只有在提升 dirty 字段为 read 字段的时候才清理删除的数据。

示例代码

type syncMapConfig struct {
   Smap sync.Map
}
// InitSmap
// @description "初始化sync.map"
// @auth yezibin 2023-02-05 15:43:08
// @return *syncMapConfig "description"
func InitSmap() *syncMapConfig {
   return &syncMapConfig{
      sync.Map{},
   }
}
// Set
// @description "批量写入map"
// @auth yezibin 2023-02-05 15:43:57
// @param config map[string]interface{} "description"
func (s *syncMapConfig) Set(config map[string]interface{})  {
   for k, v := range config {
      s.Smap.Store(k, v)
   }
}
// Get
// @description "从map里获取数据"
// @auth yezibin 2023-02-05 15:44:09
// @param k string "description"
// @return interface{} "description"
func (s *syncMapConfig) Get(k string) interface{} {
   c, ok := s.Smap.Load(k)
   if ok {
      return c
   } else {
      return nil
   }
}

性能对比

上面说了4种方法,处理用once这个包比较特殊(map只写一次,以后只读),其他都是可读写多次的,有可比性,那么2,3,4这三种方案的性能对比如何呢,哪种情况下该用哪种呢

标注:下面数据对比,带有相关字符的有如下含义

字符含义字符含义
Cmap使用了concurrent-map包WnR写和读一样多次
Smap使用了sync.Map包WnRMore读多写少
Mmap使用RWMutexWMorenR写多读少

当并发=1000,对map是部分更新,且不是更新读取的字段 

当读写一样多的时候性能: sync.Map > concurrent-map > RWMutex map

当读多写少的时候性能:concurrent-map > sync.Map >  RWMutex map 

当写多读少的时候性能:sync.Map > concurrent-map > RWMutex map 

结论:当高并发对map进行读写时,如果写的字段和读的字段错开的时候

concurrent-map 在读多写少的情况下有优势,因为锁的粒度小

sync.Map  在写多读少的情况下有优势,因为有结构设计有优势

而读写锁因为加锁粒度大,导致高并发下性能都不是很好

当并发=1000,对map是更新和读取都是同一个字段

当读写一样多的时候性能: sync.Map > RWMutex map > concurrent-map

当读多写少的时候性能:sync.Map > RWMutex map > concurrent-map 

当写多读少的时候性能:sync.Map > concurrent-map > RWMutex map 

在读写都是同一个map字段的时候,sync.Map的结构优势就凸显了,因为对读和写是针对sync.Map 结构里的read字段,且不加锁;而其他两个包都是会上锁的

当并发=10,对map是部分更新,且不是更新读取的字段

当读写一样多的时候性能: RWMutex map > sync.Map > concurrent-map

当读多写少的时候性能:RWMutex map > sync.Map > concurrent-map 

当写多读少的时候性能:RWMutex map > concurrent-map  > sync.Map

当并发变低的情况下,RWMutex map的性能就好于其他两种,主要原因是并发低,锁的竞争和阻塞情况变少,反而是结构简单不需要占用大空间的RWMutex map形式要更好

当并发=10,对map是更新和读取都是同一个字段

当读写一样多的时候性能: RWMutex map > sync.Map > concurrent-map

当读多写少的时候性能:RWMutex map > sync.Map > concurrent-map 

当写多读少的时候性能:RWMutex map  > sync.Map > concurrent-map

当并发变低的情况下,RWMutex map的性能就好于其他两种,主要原因是并发低,锁的竞争和阻塞情况变少,反而是结构简单不需要占用大空间的RWMutex map形式要更好

最终结论

选用哪个方式,其实主要先看并发数,其次看读写模式,再来选择使用哪种模式,以下表格是选用最优解

读多写少写多读少
并发高concurrent-mapsync.Map
并发低RWMutex mapRWMutex map

今天关于《如何避免go的map竞态问题的方法》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
GO语言字符串常用操作小结GO语言字符串常用操作小结
上一篇
GO语言字符串常用操作小结
MySQL索引总结(Index Type)
下一篇
MySQL索引总结(Index Type)
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    20次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    29次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    34次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    43次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码