当前位置:首页 > 文章列表 > 文章 > python教程 > 随机散布在Pytorch中

随机散布在Pytorch中

来源:dev.to 2025-02-18 14:04:07 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《随机散布在Pytorch中》,以下内容主要包含等知识点,如果你正在学习或准备学习文章,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

给我买咖啡☕

*备忘录:

  • 我的帖子解释了randomsolarize()。
  • 我的帖子解释了牛津iiitpet()。

randominvert()可以随机扭转图像,如下所示:>

*备忘录:

    初始化的第一个参数是p(可选默认:0.5-type:int或float): *备忘录:
    • 是图像是否倒置的概率。
    • >
    • 必须为0 < = x < = 1。
    第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
  • 张量必须为2d或3d。
      不使用img =。
    • 建议根据v1或v2使用v2?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomInvert

randominvert = RandomInvert()
randominvert = RandomInvert(p=0.5)

randominvert
# RandomInvert(p=0.5)

randominvert.p 
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p0_data = OxfordIIITPet(
    root="data",
    transform=RandomInvert(p=0)
)

p05_data = OxfordIIITPet(
    root="data",
    transform=RandomInvert(p=0.5)
)

p1_data = OxfordIIITPet(
    root="data",
    transform=RandomInvert(p=1)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
show_images1(data=p0_data, main_title="p0_data")
print()
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p05_data, main_title="p05_data")
print()
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p1_data, main_title="p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, prob=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        ri = RandomInvert(p=prob)
        plt.imshow(X=ri(im))
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
show_images2(data=origin_data, main_title="p0_data", prob=0)
print()
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
print()
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
  • image description


    image description

    image description

    image description


    image description

    image description

    image description


    image description

    image description

    image description

    文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《随机散布在Pytorch中》文章吧,也可关注golang学习网公众号了解相关技术文章。

  • 版本声明
    本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
    洗手间的堡垒洗手间的堡垒
    上一篇
    洗手间的堡垒
    fmtsprintf:看起来很简单,但会在口袋里燃烧一个洞
    下一篇
    fmtsprintf:看起来很简单,但会在口袋里燃烧一个洞
    查看更多
    最新文章
    查看更多
    课程推荐
    • 前端进阶之JavaScript设计模式
      前端进阶之JavaScript设计模式
      设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
      543次学习
    • GO语言核心编程课程
      GO语言核心编程课程
      本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
      516次学习
    • 简单聊聊mysql8与网络通信
      简单聊聊mysql8与网络通信
      如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
      499次学习
    • JavaScript正则表达式基础与实战
      JavaScript正则表达式基础与实战
      在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
      487次学习
    • 从零制作响应式网站—Grid布局
      从零制作响应式网站—Grid布局
      本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
      484次学习
    查看更多
    AI推荐
    • PandaWiki开源知识库:AI大模型驱动,智能文档与AI创作、问答、搜索一体化平台
      PandaWiki开源知识库
      PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
      197次使用
    • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
      AI Mermaid流程图
      SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
      990次使用
    • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
      搜获客【笔记生成器】
      搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
      1014次使用
    • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
      iTerms
      iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
      1025次使用
    • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
      TokenPony
      TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
      1094次使用
    微信登录更方便
    • 密码登录
    • 注册账号
    登录即同意 用户协议隐私政策
    返回登录
    • 重置密码