CelebA 是 PyTorch
来源:dev.to
2025-01-09 15:14:58
0浏览
收藏
积累知识,胜过积蓄金银!毕竟在文章开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《CelebA 是 PyTorch》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
请我喝杯咖啡☕
*我的帖子解释了 celeba。
celeba() 可以使用 celeba 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 split(可选-默认:"train"-类型:str)。 *可以设置“train”(162,770张图片)、“valid”(19,867张图片)、“test”(19,962张图片)或“all”(202,599张图片)。
- 第三个参数是target_type(可选-默认:“attr”-类型:str或str列表):
*备注:
- 可以为其设置“attr”、“identity”、“bbox”和/或“landmark”。
- 也可以设置空列表。
- 可以设置多个相同的值。
- 如果值的顺序不同,则其元素的顺序也会不同。
- 第四个参数是transform(optional-default:none-type:callable)。
- 第 5 个参数是 target_transform(optional-default:none-type:callable)。
- 第 6 个参数是 download(可选-默认:false-类型:bool):
*备注:
- 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
- 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
- 下载数据集需要 gdown。
- 您可以从这里手动下载并解压数据集(img_align_celeba.zip with identity_celeba.txt、list_attr_celeba.txt、list_bbox_celeba.txt、list_eval_partition.txt 和 list_landmarks_align_celeba.txt)到 data/celeba/。
from torchvision.datasets import CelebA train_attr_data = CelebA( root="data" ) train_attr_data = CelebA( root="data", split="train", target_type="attr", transform=None, target_transform=None, download=False ) valid_identity_data = CelebA( root="data", split="valid", target_type="identity" ) test_bbox_data = CelebA( root="data", split="test", target_type="bbox" ) all_landmarks_data = CelebA( root="data", split="all", target_type="landmarks" ) all_empty_data = CelebA( root="data", split="all", target_type=[] ) all_all_data = CelebA( root="data", split="all", target_type=["attr", "identity", "bbox", "landmarks"] ) len(train_attr_data), len(valid_identity_data), len(test_bbox_data) # (162770, 19867, 19962) len(all_landmarks_data), len(all_empty_data), len(all_all_data) # (202599, 202599, 202599) train_attr_data # Dataset CelebA # Number of datapoints: 162770 # Root location: data # Target type: ['attr'] # Split: train train_attr_data.root # 'data' train_attr_data.split # 'train' train_attr_data.target_type # ['attr'] print(train_attr_data.transform) # None print(train_attr_data.target_transform) # None train_attr_data.download #len(train_attr_data.attr), train_attr_data.attr # (162770, tensor([[0, 1, 1, ..., 0, 0, 1], # [0, 0, 0, ..., 0, 0, 1], # [0, 0, 0, ..., 0, 0, 1], # ..., # [1, 0, 1, ..., 0, 1, 1], # [0, 0, 0, ..., 0, 0, 1], # [0, 1, 1, ..., 1, 0, 1]])) len(train_attr_data.attr_names), train_attr_data.attr_names # (41, ['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', # 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', # 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', # ... # 'Wearing_Necklace', 'Wearing_Necktie', 'Young', '']) len(train_attr_data.identity), train_attr_data.identity # (162770, tensor([[2880], [2937], [8692], ..., [7391], [8610], [2304]])) len(train_attr_data.bbox), train_attr_data.bbox # (162770, tensor([[95, 71, 226, 313], # [72, 94, 221, 306], # [216, 59, 91, 126], # ..., # [103, 103, 143, 198], # [30, 59, 216, 280], # [376, 4, 372, 515]])) len(train_attr_data.landmarks_align), train_attr_data.landmarks_align # (162770, tensor([[69, 109, 106, ..., 152, 108, 154], # [69, 110, 107, ..., 151, 108, 153], # [76, 112, 104, ..., 156, 98, 158], # ..., # [69, 113, 109, ..., 151, 110, 151], # [68, 112, 109, ..., 150, 108, 151], # [70, 111, 107, ..., 153, 102, 152]])) train_attr_data[0] # ( , # tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, # 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, # 0, 1, 1, 0, 1, 0, 1, 0, 0, 1])) train_attr_data[1] # ( , # tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, # 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 0, 1])) train_attr_data[2] # ( , # tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, # 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, # 0, 0, 0, 1, 0, 0, 0, 0, 0, 1])) valid_identity_data[0] # ( , # tensor(2594)) valid_identity_data[1] # ( , # tensor(2795)) valid_identity_data[2] # ( , # tensor(947)) test_bbox_data[0] # ( , # tensor([147, 82, 120, 166])) test_bbox_data[1] # ( , # tensor([106, 34, 140, 194])) test_bbox_data[2] # ( , # tensor([107, 78, 109, 151])) all_landmarks_data[0] # ( , # tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154])) all_landmarks_data[1] # ( , # tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153])) all_landmarks_data[2] # ( , # tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158])) all_empty_data[0] # ( , None) all_empty_data[1] # ( , None) all_empty_data[2] # ( , None) all_all_data[0] # ( , # (tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, # 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, # 0, 1, 1, 0, 1, 0, 1, 0, 0, 1]), # tensor(2880), # tensor([95, 71, 226, 313]), # tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154]))) all_all_data[1] # ( , # (tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, # 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, # 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]), # tensor(2937), # tensor([72, 94, 221, 306]), # tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153]))) all_all_data[2] # ( , # (tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, # 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, # 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]), # tensor(8692), # tensor([216, 59, 91, 126]), # tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158]))) import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.patches import Circle def show_images(data, main_title=None): if "attr" in data.target_type and len(data.target_type) == 1 \ or not data.target_type: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, _) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.imshow(X=im) if i == 10: break plt.tight_layout(h_pad=3.0) plt.show() elif "identity" in data.target_type and len(data.target_type) == 1: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab.item()) plt.imshow(X=im) if i == 10: break plt.tight_layout(h_pad=3.0) plt.show() elif "bbox" in data.target_type and len(data.target_type) == 1: fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (i, (im, (x, y, w, h))), axis \ in zip(enumerate(data, start=1), axes.ravel()): axis.imshow(X=im) rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none') axis.add_patch(p=rect) if i == 10: break fig.tight_layout(h_pad=3.0) plt.show() elif "landmarks" in data.target_type and len(data.target_type) == 1: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lm) in enumerate(data, start=1): px = [] py = [] for j, v in enumerate(lm): if j%2 == 0: px.append(v) else: py.append(v) plt.subplot(2, 5, i) plt.imshow(X=im) plt.scatter(x=px, y=py) if i == 10: break plt.tight_layout(h_pad=3.0) plt.show() elif len(data.target_type) == 4: fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (i, (im, (_, lab, (x, y, w, h), lm))), axis \ in zip(enumerate(data, start=1), axes.ravel()): axis.set_title(label=lab.item()) axis.imshow(X=im) rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', clip_on=True) axis.add_patch(p=rect) for j, (px, py) in enumerate(lm.split(2)): axis.add_patch(p=Circle(xy=(px, py))) # for j, v in enumerate(lm): # if j%2 == 0: # px.append(v) # else: # py.append(v) # axis.scatter(x=px, y=py) # axis.plot(px, py) # `axis.scatter()` and `axis.plot()` of `plt.subplots()` don't work # properly. They shrink images so use `axis.add_patch()` instead. if i == 10: break fig.tight_layout(h_pad=3.0) plt.show() show_images(data=train_attr_data, main_title="train_attr_data") show_images(data=valid_identity_data, main_title="valid_identity_data") show_images(data=test_bbox_data, main_title="test_bbox_data") show_images(data=all_landmarks_data, main_title="all_landmarks_data") show_images(data=all_empty_data, main_title="all_empty_data") show_images(data=all_all_data, main_title="all_all_data")
终于介绍完啦!小伙伴们,这篇关于《CelebA 是 PyTorch》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 轻松连接:如何将台式电脑与打印机完美对接

- 下一篇
- 三星发布2025新款OLED电视:亮度更高,刷新率达165Hz
查看更多
最新文章
-
- 文章 · python教程 | 25分钟前 | Numpy 矩阵运算 np.dot np.linalg np.vectorize
- Python矩阵运算技巧大全
- 158浏览 收藏
-
- 文章 · python教程 | 29分钟前 |
- Python函数定义与调用全攻略
- 387浏览 收藏
-
- 文章 · python教程 | 34分钟前 | Numpy decimal 错误处理 浮点数 calculate_triangle_area
- Python计算三角形面积方法与代码示例
- 292浏览 收藏
-
- 文章 · python教程 | 36分钟前 | Django Flask URL路由 urls.py @app.route()
- PythonURL路由定义技巧与实例
- 155浏览 收藏
-
- 文章 · python教程 | 41分钟前 | 并行计算 随机数生成器 蒙特卡洛方法 Chudnovsky算法 圆周率
- Python简易计算圆周率的方法
- 185浏览 收藏
-
- 文章 · python教程 | 52分钟前 |
- Python创建WebSocket服务器实用指南
- 441浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python数据可视化技巧全攻略
- 363浏览 收藏
-
- 文章 · python教程 | 9小时前 | Excel文件 Pandas openpyxl read_excel chunksize
- Python处理Excel文件的实用技巧及方法
- 183浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- 列表、元组、集合、字典遍历终极攻略
- 224浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- FastAPI依赖注入的Python实用技巧
- 191浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python模块导入与使用技巧大全
- 191浏览 收藏
-
- 文章 · python教程 | 10小时前 | JSON 数据处理 beautifulsoup Pandas xml.etree.ElementTree
- Python爬虫数据处理技巧及方法
- 459浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 24次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 41次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 38次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 50次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 41次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览