使用Redis实现令牌桶算法原理解析
本篇文章给大家分享《使用Redis实现令牌桶算法原理解析》,覆盖了数据库的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。
在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好。
例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验。这就是使用令牌桶算法的地方。
令牌桶算法原理
如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶。如果桶中的令牌数量超过X,那么它将被丢弃。处理请求时,需要先从令牌桶中取出令牌,如果拿到了令牌,则继续处理;如果拿不到令牌,则拒绝请求。
可以看出,在令牌桶算法中设置X,Y和Z的数量尤为重要。Z应该比每Y单位时间内的请求数稍大,系统将长时间处于此状态;X是系统允许的瞬时最大请求数,并且系统不应该长时间处于此状态,否则就会频繁触发限流,此时表明流量出现了超预期的情况,需要及时调查原因并采取相应措施。
Redis实现令牌桶算法
之前看过有些程序实现的令牌桶,其向桶中放入令牌的方法是启动一个线程,每隔Y单位时间增加一次令牌数量,或者在Timer中定时执行这一过程。我不太满意这种方法, 原因有二,一是浪费线程资源,二是因为调度的问题执行时间不精确。
这里确定令牌桶中令牌数量的方法是通过计算得出,首先算出从上次请求到这次请求经过了多长时间,是否达到发令牌的时间阈值,然后增加的令牌数是多少,这些令牌能够放到桶中的是多少。
Talk is cheap!
下边就来看看Redis中怎么实现的,因为涉及到多次与Redis的交互,这里为了提高限流处理的吞吐量,减少程序与Redis的交互次数,采用了Redis支持的Lua script,Lua script的执行是原子的,所以也不用担心出现脏数据的问题。
代码节选自 FireflySoft.RateLimit ,它不仅支持普通主从部署Redis,还支持集群Redis,所以吞吐量可以通过水平扩展的方式进行提升。为了方便阅读,这里增加一些注释,实际是没有的。
-- 定义返回值,是个数组,包含:是否触发限流(1限流 0通过)、当前桶中的令牌数 local ret={} ret[1]=0 -- Redis集群分片Key,KEYS[1]是限流目标 local cl_key = '{' .. KEYS[1] .. '}' -- 获取限流惩罚的当前设置,触发限流惩罚时会写一个有过期时间的KV -- 如果存在限流惩罚,则返回结果[1,-1] local lock_key=cl_key .. '-lock' local lock_val=redis.call('get',lock_key) if lock_val == '1' then ret[1]=1 ret[2]=-1 return ret; end -- 这里省略部分代码 -- 获取[上次向桶中投放令牌的时间],如果没有设置过这个投放时间,则令牌桶也不存在,此时: -- 一种情况是:首次执行,此时定义令牌桶就是满的。 -- 另一种情况是:较长时间没有执行过限流处理,导致承载这个时间的KV被释放了, -- 这个过期时间会超过自然投放令牌到桶中直到桶满的时间,所以令牌桶也应该是满的。 local last_time=redis.call('get',st_key) if(last_time==false) then -- 本次执行后剩余令牌数量:桶的容量- 本次执行消耗的令牌数量 bucket_amount = capacity - amount; -- 将这个令牌数量更新到令牌桶中,同时这里有个过期时间,如果长时间不执行这个程序,令牌桶KV会被回收 redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time) -- 设置[上次向桶中放入令牌的时间],后边计算应放入桶中的令牌数量时会用到 redis.call('set',st_key,start_time,'PX',key_expire_time) -- 返回值[当前桶中的令牌数] ret[2]=bucket_amount -- 无需其它处理 return ret end -- 令牌桶存在,获取令牌桶中的当前令牌数 local current_value = redis.call('get',KEYS[1]) current_value = tonumber(current_value) -- 判断是不是该放入新令牌到桶中了:当前时间-上次投放的时间 >= 投放的时间间隔 last_time=tonumber(last_time) local last_time_changed=0 local past_time=current_time-last_time if(past_time<inflow_unit then bucket_amount="current_value-amount" else local past_inflow_unit_quantity="past_time/inflow_unit" last_time="last_time+past_inflow_unit_quantity*inflow_unit" last_time_changed="1" past_inflow_quantity="past_inflow_unit_quantity*inflow_quantity_per_unit" end ret if lock_seconds>0 then redis.call('set',lock_key,'1','EX',lock_seconds,'NX') end ret[1]=1 return ret end -- 来到这里,代表可以成功扣减令牌,则需要更新令牌桶KV if last_time_changed==1 then redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time) -- 有新投放,更新[上次投放时间]为本次投放时间 redis.call('set',st_key,last_time,'PX',key_expire_time) else redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time) end return ret</inflow_unit>
通过以上代码,可以看出,其主要处理过程是:
1、判断有没有被限流惩罚,有则直接返回,无则进入下一步。
2、判断令牌桶是否存在,不存在则先创建令牌桶,然后扣减令牌返回,存在则进入下一步。
3、判断是否需要投放令牌,不需要则直接扣减令牌,需要则先投放令牌再扣减令牌。
4、判断扣减后的令牌数,如果小于0则返回限流,同时设置限流惩罚,如果大于等于0则进入下一步。
5、更新桶中的令牌数到Redis。
你可以在任何一种开发语言的Redis库中提交并运行这段Lua script脚本,如果你使用的是.NET平台,可以参考这篇文章:ASP.NET Core中使用令牌桶限流 。
关于FireflySoft.RateLimit
FireflySoft.RateLimit 是一个基于 .NET Standard 的限流类库,其内核简单轻巧,能够灵活应对各种需求的限流场景。
其主要特点包括:
- 多种限流算法:内置固定窗口、滑动窗口、漏桶、令牌桶四种算法,还可自定义扩展。
- 多种计数存储:目前支持内存、Redis两种存储方式。
- 分布式友好:通过Redis存储支持分布式程序统一计数。
- 限流目标灵活:可以从请求中提取各种数据用于设置限流目标。
- 支持限流惩罚:可以在客户端触发限流后锁定一段时间不允许其访问。
- 动态更改规则:支持程序运行时动态更改限流规则。
- 自定义错误:可以自定义触发限流后的错误码和错误消息。
- 普适性:原则上可以满足任何需要限流的场景。
Github开源地址:https://github.com/bosima/FireflySoft.RateLimit/blob/master/README.zh-CN.md
今天关于《使用Redis实现令牌桶算法原理解析》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- 利用Redis实现防止接口重复提交功能

- 下一篇
- Redis之sql缓存的具体使用
-
- 数据库 · Redis | 1天前 |
- Redis事务怎么用?4步带你快速掌握事务精髓!
- 111浏览 收藏
-
- 数据库 · Redis | 1天前 |
- Redis启动不能访问?保姆级排错+解决方案
- 142浏览 收藏
-
- 数据库 · Redis | 1天前 |
- Redis与RabbitMQ性能对决,这些意想不到的联合场景你压根猜不到!
- 415浏览 收藏
-
- 数据库 · Redis | 1天前 |
- Redis集群分片教学:手把手教你搞定数据分片
- 126浏览 收藏
-
- 数据库 · Redis | 1天前 |
- Redis防火墙规则配置教学,大佬带你玩转最佳实践
- 361浏览 收藏
-
- 数据库 · Redis | 1天前 |
- RedisvsMemcached:哪个更适合你?功能对比与场景实战
- 197浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis设置强密码+详细访问控制教程(手把手教学)
- 291浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis性能优化!手把手教你定位瓶颈+解决方案
- 380浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis+HBase双剑合璧,教你打造超神大数据存储系统!
- 436浏览 收藏
-
- 数据库 · Redis | 2天前 |
- RedisSentinel高可用集群配置超详细教程
- 254浏览 收藏
-
- 数据库 · Redis | 2天前 |
- 手把手教你判断Redis版本该不该升级
- 244浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 14次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 48次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 56次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 51次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 56次使用
-
- goHTTP2的头部压缩算法hpack实现详解
- 2022-12-22 398浏览
-
- go语言算法题解二叉树的最小深度
- 2022-12-22 327浏览
-
- Go 语言简单实现Vigenere加密算法
- 2022-12-29 319浏览
-
- 请教go语言算法将二维数组转换为目录结构
- 2023-01-07 272浏览
-
- 为上岸Alibaba,我把Github上Java面试题都整理了一遍
- 2023-02-24 130浏览