goHTTP2的头部压缩算法hpack实现详解
本篇文章给大家分享《goHTTP2的头部压缩算法hpack实现详解》,覆盖了Golang的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。
Hpack 是啥
Hpack 是 HTTP2 的头部压缩算法。在 HTTP1 中,每次传输都会有大量的 Header 携带,我们可以拿一个实际的请求来看,如图一:

图一:请求 header
这里面 Header 很多是请求共性的,比如 method: POST,就是 post 请求的 header,那每个 POST 请求都会携带这个 header;以及同一个页面里可能有很多请求需要带上相同 header,比如 user-agent、鉴权相关 header 等等。那如果 body 很小的话,每次传输利用率就很低了。HTTP2 为了提高传输效率设计了 HPACK 头部压缩算法。
HPACK 原理
HPACK 维护了两张表,静态表和动态表。如果 Header key、value 在表里的话,直接将 Header kv 用 index 编码即可;如果不存在表中的话,则采用 Huffman 编码或者不编码发送。每条连接维护各自的动态表,request 和 response 的动态表是分开的。
静态表存储常见的 Header kv,比如 :method: GET、:method: POST、:schema: http 等一共 61 项,具体的项可以参考 RFC 7541 文档。
动态表是一个先进先出的表,先进入的在高索引空间,后进入的在低索引空间(索引空间从0到最后递减)。header 根据一定的规则判断是否加入动态表,有三种规则:
- 将 header 字段添加到动态表的开头
- 不将 header 字段添加到动态表
- 不将 header 添加到动态表,另外规定 header 始终不被动态表编码,常见于有代理或者网关的场景。这是为了保护 header 字段值,比如通过大量尝试判断 header size 可以推断出动态表的内容。
动态表也有一定大小,通过 SETTINGS_HEADER_TABLE_SIZE 来设置。如果新的 Header kv size 超过了这个值,就会逐出动态表,直到能够放下这个 Header kv 或者将所有的逐出。特别的,如果一个 Header kv size 大于了动态表的最大值,那么这个 Header 的作用就是清空动态表。
如何编码
- 该 Header 已经存在动态表中
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 1 | Index (7+) | +---+---------------------------+
- Key 被索引,value 未索引且允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 1 | Index (6+) | +---+---+-----------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
01 后的 index 表示 Header Key 的索引
这个 Header 会被加在 server 和 client 的动态表中。
- Key 被索引,value 未索引且不允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0 | 0 | 0 | Index (4+) | +---+---+-----------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
- Key、value 均未索引且允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 1 | 0 | +---+---+-----------------------+ | H | Name Length (7+) | +---+---------------------------+ | Name String (Length octets) | +---+---------------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
- Key、value 均未索引且不允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0 | 0 | 0 | 0 | +---+---+-----------------------+ | H | Name Length (7+) | +---+---------------------------+ | Name String (Length octets) | +---+---------------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
- Key 被索引,value 未索引且绝对不允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0 | 0 | 1 | Index (4+) | +---+---+-----------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
- Key、value 均未索引且绝对不允许保存
0 1 2 3 4 5 6 7 +---+---+---+---+---+---+---+---+ | 0 | 0 | 0 | 1 | 0 | +---+---+-----------------------+ | H | Name Length (7+) | +---+---------------------------+ | Name String (Length octets) | +---+---------------------------+ | H | Value Length (7+) | +---+---------------------------+ | Value String (Length octets) | +-------------------------------+
举个编码?
:method: GET :scheme: http :path: / :authority: www.example.com
编码后的 16 进制如下
8286 8441 8cf1 e3c2 e5f2 3a6b a0ab 90f4 ff
82 = 10000010 -> 8 表示 kv 均被索引,表项为静态表第 2 项-> :method: GET
86 = 10000110 -> 8 表示 kv 均被索引,表项为静态表第 6 项-> :scheme: http
84 = 10000100 -> 8 表示 kv 均被索引,表项为静态表第 4 项 -> :path: /
41 = 01000001 -> 4 表示 Key 被索引,value 未索引且允许保存,name 为静态表第1项,即 :authority。接下来表示这个 header对应的 value。
8c = 10001100 -> 第一个 bit 为1,表示 huffman 编码,字符串的长度为 1100b = 12。接着解析12个字节为 huffman 编码后的字符 f1e3 c2e5 f23a 6ba0 ab90 f4ff, 解码为www.example.com
所以得到最后一个头部 :authority: www.example.com
HPACK 实现
我们可以先想一下,如果要做到索引的复杂度尽可能小,同时又要有序方便逐出,那应该采用什么数据结构呢?
那应该很容易想到,我们需要用一个 slice 存下来所有的数据,也方便逐出;如果一个 Header 来了,我们也需要两个 map 存下这个这个 Header 对应的在 slice 中的 index。
Golang 中 HPACK 的实现在 hpack 文件夹中,动态表的数据结构和我们想的一样。
动态表的实现在 tables.go 当中
type headerFieldTable struct {
// 用 slice 存储具体的表项,同时也方便逐出
ents []HeaderField
// 逐出数量,可以理解为偏移修正量。如果一个 header 被逐出后,那其他 header 的
// 索引就会升高。在 map 中修改需要 O(n) 的开销,所以计算 id 时在这里统一加
// 一个修正量即可。
evictCount uint64
// 只根据 header 找对应的 id。
byName map[string]uint64
// 根据 header kv 找对应的 id。
byNameValue map[pairNameValue]uint64
}
type pairNameValue struct {
name, value string
}
func (t *headerFieldTable) addEntry(f HeaderField) {
// 计算唯一 id,同时保证不和已经在表中的 id 重复
id := uint64(t.len()) + t.evictCount + 1
// 在两个 map 中存下索引
t.byName[f.Name] = id
t.byNameValue[pairNameValue{f.Name, f.Value}] = id
// 保存索引
t.ents = append(t.ents, f)
}
// 逐出 n 个
func (t *headerFieldTable) evictOldest(n int) {
...
for k := 0; k
<p>其他部分的实现就很简单了,基本上就是照着上面的流程写就可以了。其中有一个解析当前 header 是哪种类型的实现还挺有意思的。</p>
<pre class="brush:go;">func (d *Decoder) parseHeaderFieldRepr() error {
b := d.buf[0]
switch {
case b&128 != 0:
// 128 => 10000000
// 设置了最高位,对应上面的第 1 种 kv 均在的情况
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.1
return d.parseFieldIndexed()
case b&192 == 64:
// 192 => 11000000
// 对应前三位为 010 的情况,即允许保存的情况
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.1
return d.parseFieldLiteral(6, indexedTrue)
case b&240 == 0:
// 240 => 11110000
// 对应前四位都是0的情况,即不允许保存的情况
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.2
return d.parseFieldLiteral(4, indexedFalse)
case b&240 == 16:
// 240 => 11110000
// 对应前四位是0001的情况,即绝对不允许保存的情况
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.3
return d.parseFieldLiteral(4, indexedNever)
case b&224 == 32:
// 224 => 11100000
// 对应前三位是001的情况,即动态表大小更新的情况
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.3
return d.parseDynamicTableSizeUpdate()
}
return DecodingError{errors.New("invalid encoding")}
}
遇到的坑
写这篇文章是因为 hertz 在接入 h3 的时候会偶发的 panic,原因是在动态表存表项的时候,存入了一个 unsafe string,后面这一项给变了,导致双重校验的时候没有删掉,从而引发了 panic。
参考文档
www.rfc-editor.org/rfc/rfc7541
理论要掌握,实操不能落!以上关于《goHTTP2的头部压缩算法hpack实现详解》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!
详解Golang中字符串的使用
- 上一篇
- 详解Golang中字符串的使用
- 下一篇
- golang进程内存控制避免docker内oom
-
- Golang · Go教程 | 5小时前 |
- Go语言实现与外部程序持续通信技巧
- 229浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- GolangWeb错误处理技巧分享
- 190浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- Go语言error接口错误返回实例解析
- 324浏览 收藏
-
- Golang · Go教程 | 5小时前 |
- Golang模板方法模式实战解析
- 180浏览 收藏
-
- Golang · Go教程 | 6小时前 | golang dockercompose 健康检查 多阶段构建 启动优化
- Golang优化Docker多容器启动技巧
- 228浏览 收藏
-
- Golang · Go教程 | 6小时前 |
- 优化Golang模块缓存,提升构建效率技巧
- 483浏览 收藏
-
- Golang · Go教程 | 6小时前 |
- Go递归函数返回值处理方法
- 353浏览 收藏
-
- Golang · Go教程 | 6小时前 |
- Golang微服务容器化部署指南
- 226浏览 收藏
-
- Golang · Go教程 | 6小时前 |
- Golang静态资源管理实战指南
- 186浏览 收藏
-
- Golang · Go教程 | 7小时前 | golang 自定义函数 模板渲染 html/template 模板语法
- Golang模板渲染教程与使用详解
- 104浏览 收藏
-
- Golang · Go教程 | 7小时前 |
- Go模块版本管理全攻略
- 268浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3424次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4528次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- go语言算法题解二叉树的最小深度
- 2022-12-22 327浏览
-
- Go 语言简单实现Vigenere加密算法
- 2022-12-29 319浏览
-
- 请教go语言算法将二维数组转换为目录结构
- 2023-01-07 272浏览
-
- 为上岸Alibaba,我把Github上Java面试题都整理了一遍
- 2023-02-24 130浏览
-
- Go Java 算法之字符串解码示例详解
- 2023-01-07 479浏览

