当前位置:首页 > 文章列表 > 数据库 > Redis > 基于redis+lua进行限流的方法

基于redis+lua进行限流的方法

来源:脚本之家 2022-12-29 19:56:21 0浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《基于redis+lua进行限流的方法》,聊聊限流、redislua,我们一起来看看吧!

1,首先我们redis有很多限流的算法(比如:令牌桶,计数器,时间窗口)等,但是都有一定的缺点,令牌桶在单项目中相对来说比较稳定,但是在分布式集群里面缺显的不那么友好,这时候,在分布式里面进行限流的话,我们则可以使用redis+lua脚本进行限流,能抗住亿级并发

2,下面说说lua+redis进行限流的做法
开发环境:idea+redis+lua
第一:
打开idea的插件市场,然后搜索lua,点击右边的安装,然后安装好了,重启即可

在这里插入图片描述

第二:写一个自定义限流注解

package com.sport.sportcloudmarathonh5.config;

import java.lang.annotation.*;

/**
 * @author zdj
 * @version 1.0.0
 * @description 自定义注解实现分布式限流
 */
@Target(value = ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RedisLimitStream {
    /**
     * 请求限制,一秒内可以允许好多个进入(默认一秒可以支持100个)
     * @return
     */
    int reqLimit() default 1000;

    /**
     * 模块名称
     * @return
     */
    String reqName() default "";
}

第三:在指定的方法上面添加该注解

/**
     * 压测接口
     * @return
     */
    @Login(isLogin = false)
    @RedisLimitStream(reqName = "名额秒杀", reqLimit = 1000)
    @ApiOperation(value = "压测接口", notes = "压测接口", httpMethod = "GET")
    @RequestMapping(value = "/pressure", method = RequestMethod.GET)
    public ResultVO<object> pressure(){
        return ResultVO.success("抢购成功!");
    }
</object>

第四:添加一个拦截器对访问的方法在访问之前进行拦截:

package com.sport.sportcloudmarathonh5.config;

import com.alibaba.fastjson.JSONObject;
import com.sport.sportcloudmarathonh5.service.impl.RedisService;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.stereotype.Component;
import org.springframework.util.ObjectUtils;

import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;

/**
 * @author zdj
 * @version 1.0.0
 * @description MyRedisLimiter注解的切面类
 */
@Aspect
@Component
public class RedisLimiterAspect {
    private final Logger logger = LoggerFactory.getLogger(RedisLimitStream.class);
    /**
     * 当前响应请求
     */
    @Autowired
    private HttpServletResponse response;

    /**
     * redis服务
     */
    @Autowired
    private RedisService redisService;

    /**
     * 执行redis的脚本文件
     */
    @Autowired
    private RedisScript<boolean> rateLimitLua;

    /**
     * 对所有接口进行拦截
     */
    @Pointcut("execution(public * com.sport.sportcloudmarathonh5.controller.*.*(..))")
    public void pointcut(){}

    /**
     * 对切点进行继续处理
     */
    @Around("pointcut()")
    public Object process(ProceedingJoinPoint proceedingJoinPoint) throws Throwable{
        //使用反射获取RedisLimitStream注解
        MethodSignature signature = (MethodSignature) proceedingJoinPoint.getSignature();
        //没有添加限流注解的方法直接放行
        RedisLimitStream redisLimitStream = signature.getMethod().getDeclaredAnnotation(RedisLimitStream.class);
        if(ObjectUtils.isEmpty(redisLimitStream)){
            return proceedingJoinPoint.proceed();
        }

        //List设置Lua的KEYS[1]
        List<string> keyList = new ArrayList();
        keyList.add("ip:" + (System.currentTimeMillis() / 1000));

        //获取注解上的参数,获取配置的速率
        //List设置Lua的ARGV[1]
        int value = redisLimitStream.reqLimit();

        // 调用Redis执行lua脚本,未拿到令牌的,直接返回提示
        boolean acquired = redisService.execute(rateLimitLua, keyList, value);
        logger.info("执行lua结果:" + acquired);
        if(!acquired){
            this.limitStreamBackMsg();
            return null;
        }

        //获取到令牌,继续向下执行
        return proceedingJoinPoint.proceed();
    }

    /**
     * 被拦截的人,提示消息
     */
    private void limitStreamBackMsg() {
        response.setHeader("Content-Type", "text/html;charset=UTF8");
        PrintWriter writer = null;
        try {
            writer = response.getWriter();
            writer.println("{\"code\":503,\"message\":\"当前排队人较多,请稍后再试!\",\"data\":\"null\"}");
            writer.flush();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (writer != null) {
                writer.close();
            }
        }
    }
}
</string></boolean>

第五:写个配置类,在启动的时候将我们的lua脚本代码加载到redisscript中

package com.sport.sportcloudmarathonh5.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.script.DefaultRedisScript;

/**
 * @author zdj
 * @version 1.0.0
 * @description 实现redis的编码方式
 */
@Configuration
public class RedisConfiguration {

    /**
     * 初始化将lua脚本加载到redis脚本中
     * @return
     */
    @Bean
    public DefaultRedisScript loadRedisScript() {
        DefaultRedisScript redisScript = new DefaultRedisScript();
        redisScript.setLocation(new ClassPathResource("limit.lua"));
        redisScript.setResultType(Boolean.class);
        return redisScript;
    }
}

第六:redis执行lua的方法

  /**
     * 执行lua脚本
     * @param redisScript lua源代码脚本
     * @param keyList
     * @param value
     * @return
     */
    public boolean execute(RedisScript<boolean> redisScript, List<string> keyList, int value) {
        return redisTemplate.execute(redisScript, keyList, String.valueOf(value));
    }
</string></boolean>

第七:在resources目录下面新加一个lua脚本文件,将下面代码拷贝进去即可:

local key = KEYS[1] --限流KEY(一秒一个)
local limit = tonumber(ARGV[1]) --限流大小
local current = tonumber(redis.call('get', key) or "0")
if current + 1 > limit then --如果超出限流大小
    return false
else --请求数+1,并设置2秒过期
    redis.call("INCRBY", key, "1")
    redis.call("expire", key, "2")
end
return true

在这里插入图片描述

最后执行即可:
可以使用jemster进行测试:

在这里插入图片描述

到这里,我们也就讲完了《基于redis+lua进行限流的方法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于redis的知识点!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
详解redis集群的三种方式详解redis集群的三种方式
上一篇
详解redis集群的三种方式
如何使用注解方式实现 Redis 分布式锁
下一篇
如何使用注解方式实现 Redis 分布式锁
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    19次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    50次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    58次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    53次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    57次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码