-
- FastAPI入门教程:PythonAPI开发指南
- 使用Python开发API接口可通过FastAPI实现,步骤包括:1.安装fastapi和uvicorn包;2.创建Python文件并编写简单接口示例;3.通过uvicorn启动服务访问测试;4.使用路径参数或查询参数接收输入;5.利用Pydantic定义数据模型进行自动校验;6.自动生成交互式文档便于调试和展示;7.可选配置关闭文档。FastAPI简化了路由定义、输入处理及数据验证流程,提升了开发效率。
- 文章 · python教程 | 1星期前 | 109浏览 收藏
-
- Python全局变量定义详解
- 在Python中,global关键字用于在函数内部修改全局变量。1)global关键字允许函数内部修改全局变量,而非创建新局部变量。2)使用global提高代码可读性和可维护性,但需谨慎,因可能增加代码复杂度。3)替代方案包括使用函数参数和返回值,或单例模式管理共享状态,提升代码模块化和可维护性。
- 文章 · python教程 | 1星期前 | 297浏览 收藏
-
- Python函数返回值查看技巧全解析
- 最直接的方法是将函数调用结果赋值给变量并打印,或在交互式环境中直接调用函数查看输出,1.赋值后打印:result=func(),print(result)可查看返回值;2.交互式环境直接调用:Python会自动显示返回值;3.使用调试器:在VSCode、PyCharm等IDE中设置断点,单步执行并查看变量窗口或添加观察表达式,可精确追踪返回值;4.理解返回机制:无return时函数默认返回None,returna,b实际返回元组,可通过解包接收;5.排查非预期返回值:检查是否遗漏return、条件分支不全
- 文章 · python教程 | 1星期前 | 单元测试 调试 返回值 排查 Python函数 432浏览 收藏
-
- 如何用Python处理医疗数据?DICOM文件读取
- Python读取和处理DICOM文件的关键在于使用pydicom库。1.安装必要库:通过pip安装pydicom、numpy和matplotlib。2.读取DICOM文件:使用pydicom的dcmread方法加载文件并访问元数据,如患者姓名、图像尺寸等。3.显示图像:提取pixel_array属性并通过matplotlib显示图像,必要时调整对比度。4.处理多帧DICOM:检查NumberOfFrames字段,对三维数组循环逐帧显示。5.注意事项:关注路径、权限、标签缺失及内存管理问题。掌握这些步骤是医
- 文章 · python教程 | 1星期前 | 396浏览 收藏
-
- Django入门:PythonWeb开发教程
- 学Python做Web开发,Django是理想选择。1.先创建项目跑起来:用django-adminstartprojectmysite生成基础结构,运行开发服务器访问欢迎页;2.了解MTV架构:Model处理数据库,View处理请求逻辑,Template渲染前端展示;3.使用ORM操作数据库:通过定义模型类自动生成数据表,执行迁移命令管理结构变化,调用方法实现增删改查。掌握这些核心机制后,可逐步深入用户认证、API开发和部署等进阶内容。
- 文章 · python教程 | 1星期前 | 382浏览 收藏
-
- PythonPlaywright自动化测试教程
- Playwright是自动化测试的推荐框架。它支持多种浏览器,提供强大API,可模拟用户操作并处理动态内容和AJAX请求。1.安装Playwright需执行pipinstallplaywright及playwrightinstall;2.编写测试用例可通过sync_playwright实现浏览器操作与断言;3.使用playwrightcodegen可启动Inspector生成代码;4.可集成pytest等测试框架组织测试套件。选择框架时应考虑项目类型、技术栈、团队能力及框架特性。提高覆盖率需编写充分用例、
- 文章 · python教程 | 1星期前 | Python 自动化测试 测试覆盖率 Ajax请求 Playwright 477浏览 收藏
-
- Python词云图制作技巧大全
- 使用Python制作词云图的核心是wordcloud库,配合matplotlib显示图像,jieba处理中文分词,numpy用于图像蒙版处理;2.基础步骤包括安装库、准备文本、创建WordCloud对象并生成图像;3.为提升表现力,可自定义colormap颜色方案、background_color背景色、font_path中文字体路径以避免乱码;4.处理中文时必须使用jieba进行分词,否则会将单字视为独立词汇;5.需设置font_path指向支持中文的字体文件(如SimHei.ttf)以解决乱码问题;6
- 文章 · python教程 | 1星期前 | 字体 中文分词 词云图 jieba wordcloud 418浏览 收藏
-
- 正则条件匹配怎么用?if-else写法详解
- 正则表达式中的条件匹配允许根据条件选择不同匹配模式,其基本结构为(?(condition)true-pattern)或(?(condition)true-pattern|false-pattern),常见应用场景包括匹配带引号或不带引号的内容,如解析HTML属性值时可使用(["'])?([^"']+)(?(1)\1|(?!\s))实现,此外还可使用命名组提升可读性,例如(?<quote>["'])?(\w+)(?(quote)\1|.),但需注意该特性并非所有引擎均支持,常见支持的语言包括Pe
- 文章 · python教程 | 1星期前 | 100浏览 收藏
-
- Python自动发邮件:IMAP协议全解析
- IMAP协议的核心优势在于邮件保留在服务器上,支持多设备同步、精细化管理、高效搜索和文件夹操作,适用于自动化报告提取、客服邮件分类、系统告警监控、附件处理和个人邮件整理等场景;2.使用Python的imaplib库需先通过IMAP4_SSL连接并登录,再用search()按条件(如UNSEEN、FROM、SUBJECT)搜索邮件ID,fetch()获取RFC822格式的原始邮件数据,最后用email模块解析Message对象,提取主题、发件人、日期、正文及附件,并处理编码与多部分结构;3.实际部署中可能面
- 文章 · python教程 | 1星期前 | Python 邮件解析 IMAP协议 自动化邮件 imaplib库 458浏览 收藏
-
- Python定时任务实现方法及schedule模块详解
- Python中实现定时任务可使用schedule模块,其核心步骤为:定义任务函数,通过schedule.every().do()注册任务,并在whileTrue循环中调用schedule.run_pending()和time.sleep()持续检查并执行到期任务;2.schedule模块的局限性包括:单线程阻塞导致长任务阻塞其他任务、无任务持久化机制、缺乏错误重试、并发控制和分布式能力;3.为确保稳定运行,应为每个任务添加try-except异常处理,使用logging记录错误,并借助systemd、Su
- 文章 · python教程 | 1星期前 | 异常处理 Celery APScheduler Python定时任务 schedule模块 416浏览 收藏
-
- Python实时看板制作:Streamlit实战教程
- 使用Python和Streamlit制作实时数据看板的核心是持续获取数据、处理后通过Streamlit组件动态更新;2.实现方法包括利用st.empty()创建占位符并结合time.sleep()循环刷新,模拟实时更新效果;3.数据源可为API、数据库或文件流,需确保脚本能持续读取最新数据;4.通过st.session_state保存历史数据和计算结果,避免重复处理,提升效率;5.使用@st.cache_data(ttl=秒数)对耗时操作设置短时效缓存,平衡实时性与性能;6.部署可选择StreamlitC
- 文章 · python教程 | 1星期前 | Python 性能优化 数据可视化 Streamlit 实时数据看板 141浏览 收藏
-
- Python异步生成器用法详解
- 异步生成器通过asyncdef定义并结合yield和await实现异步迭代,可在I/O等待时释放控制权以提升并发性能;1.异步生成器与普通生成器的区别在于前者支持await,能处理异步操作且需用asyncfor迭代;2.异常处理可通过在生成器内部或asyncfor外部使用try...except实现;3.适用于I/O密集型场景如网络请求、数据库流式读取和日志处理;4.可用于分页加载数据,通过循环调用异步分页函数逐页获取并yield数据,避免内存过载,提高响应速度。
- 文章 · python教程 | 1星期前 | 分页加载 async/await I/O密集型 异步生成器 异步迭代 208浏览 收藏
-
- PythonLabelEncoder使用详解
- LabelEncoder是sklearn.preprocessing中用于将类别型标签转换为数值型的工具,其核心作用是将文本类别映射为从0开始的整数。使用时需先导入并调用.fit_transform()方法完成训练与编码,输出结果为numpy数组;若需还原编码,可用.inverse_transform()方法。注意事项包括:不能直接对未fit的数据使用transform、编码顺序按字母排序而非出现顺序、不适用于多列特征处理,且无法自动处理新类别。实际应用中建议配合pandas使用,并保存已fit的编码器以
- 文章 · python教程 | 1星期前 | 252浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 224次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 221次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 219次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 224次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 244次使用