• Python自动截图技巧全解析
    Python自动截图技巧全解析
    Python自动化截图的核心优势在于其丰富的生态系统、易用性、跨平台能力、与UI自动化工具的整合以及活跃的社区支持。1.生态系统丰富,结合Pillow、pytesseract、OpenCV等库可实现图像处理、OCR识别和高级图像分析;2.易学易用,降低自动化脚本编写门槛;3.支持跨平台运行,适用于不同操作系统;4.可与Selenium、Playwright等工具无缝整合,构建复杂自动化流程;5.活跃的社区提供丰富的技术支持。这些特性使Python在软件测试、数据抓取、报告生成、RPA及内容创作等实际应用中
    文章 · python教程   |  1星期前  |   OCR 图像处理 pyautogui Python自动化截图 mss 109浏览 收藏
  • Python股票分析:yfinance与Pandas实战教程
    Python股票分析:yfinance与Pandas实战教程
    如何用Python进行股票数据分析?1.安装yfinance和Pandas库,使用pipinstallyfinancepandas;2.用yfinance获取股票数据,如苹果公司历史数据aapl.history(period="1y");3.用Pandas清洗处理数据,如填充缺失值fillna(0);4.使用Matplotlib和Seaborn可视化数据,绘制收盘价折线图和成交量柱状图;5.计算并绘制移动平均线识别趋势,如50日均线rolling(window=50)。
    文章 · python教程   |  1星期前  |   Python 数据可视化 Pandas 股票数据分析 yfinance 456浏览 收藏
  • Python构建端到端异常检测MLOps流程
    Python构建端到端异常检测MLOps流程
    异常检测MLOps流水线的核心在于实现从数据摄取、模型训练、部署、监控到迭代的闭环管理。1.数据是基石,需持续摄取并进行清洗、标准化、特征工程,使用Pandas、NumPy、Dask或PySpark等工具。2.模型构建与训练需自动化,采用IsolationForest、Autoencoders等算法,并借助MLflow或DVC记录训练参数与模型血统。3.模型部署需容器化,通过Docker封装,并使用FastAPI、Flask或Kubernetes实现服务化与弹性伸缩。4.监控需涵盖数据质量、模型性能、系统
    文章 · python教程   |  1星期前  |   Python MLOps 端到端 异常检测 流水线 469浏览 收藏
  • Python数据分析实战技巧全解析
    Python数据分析实战技巧全解析
    数据分析需先清洗数据,再通过探索性分析指导建模,最后用合适方法与可视化呈现结果。首先数据清洗包括处理缺失值、异常值、重复数据及格式转换,如用pandas.isna()检测缺失值,fillna()填充,箱线图识别异常值;其次探索性分析(EDA)通过直方图、散点图、describe()和相关系数矩阵了解数据分布与变量关系;接着根据业务目标选择分类(逻辑回归、随机森林)、回归(线性回归、XGBoost)、聚类(KMeans、DBSCAN)等方法;最后可视化使用Matplotlib、Seaborn或Plotly,
    文章 · python教程   |  1星期前  |   131浏览 收藏
  • Python词云生成教程:wordcloud实战详解
    Python词云生成教程:wordcloud实战详解
    生成词云图的关键在于准备数据和调整参数。1.安装wordcloud、matplotlib和jieba库;2.获取并读取文本数据,中文需用jieba分词处理;3.调用WordCloud类生成词云,注意设置字体、尺寸和背景色;4.可选自定义形状和颜色,通过mask参数使用图像模板,结合colormap配色,并用stopwords过滤无意义词汇。整个过程步骤清晰,但需注意细节如中文字体支持和遮罩格式。
    文章 · python教程   |  1星期前  |   296浏览 收藏
  • Python随机生成方案全解析
    Python随机生成方案全解析
    使用Python进行数据模拟可通过不同工具实现,根据需求选择合适方法。1.基础随机数可用random模块,如生成随机整数、浮点数或从列表中选元素;2.复杂真实数据推荐Faker库,支持生成姓名、地址、邮箱等结构化信息,并可指定语言地区;3.时间序列与分布数据借助numpy和pandas,可创建正态或均匀分布数值及连续日期;4.自定义逻辑可通过封装函数结合上述方法,确保字段符合特定规则,如年龄限制或状态选项,从而批量生成结构一致的数据。
    文章 · python教程   |  1星期前  |   193浏览 收藏
  • Python特征工程与选择技巧全解析
    Python特征工程与选择技巧全解析
    特征工程的关键步骤和特征选择方法包括:缺失值处理、类别编码、标准化/归一化、多项式特征生成;特征选择方法有方差选择法、相关系数法、基于模型的特征选择、递归特征消除。在Python中,缺失值处理可用SimpleImputer或pandas.fillna(),类别编码使用OneHotEncoder或LabelEncoder,标准化/归一化借助StandardScaler和MinMaxScaler,多项式特征通过PolynomialFeatures生成。特征选择方面,方差选择法(VarianceThreshol
    文章 · python教程   |  1星期前  |   478浏览 收藏
  • Python中//运算符作用解析
    Python中//运算符作用解析
    在Python中,//运算符用于整除操作,返回两个数相除的整数部分。1.它向下取整,正数结果四舍五入到较小整数,负数结果四舍五入到较大整数。2.应用场景包括数组索引计算和分页分组。3.优点是简洁和高效,劣势是可能丢失精度和负数处理需谨慎。
    文章 · python教程   |  1星期前  |   483浏览 收藏
  • Python性能优化技巧全解析
    Python性能优化技巧全解析
    要提升Python程序性能,需从优化技巧和工具入手。1.优先使用内置函数和列表推导式,减少循环;2.减少全局变量访问,缓存函数引用;3.根据场景选择合适数据结构如set、deque、NumPy数组;4.借助NumPy、Cython、Numba等第三方库加速;5.使用cProfile、timeit等工具分析性能瓶颈,有针对性优化。
    文章 · python教程   |  1星期前  |   269浏览 收藏
  • RayServe异常检测服务部署指南
    RayServe异常检测服务部署指南
    RayServe是部署可扩展异常检测服务的理想选择,原因包括其分布式架构支持水平扩展、具备容错机制保障服务稳定性、通过批处理和智能路由实现低延迟、以及与Ray生态系统无缝集成。部署流程为:1.准备训练好的模型(如IsolationForest或Autoencoder);2.定义RayServeDeployment,封装模型加载和预测逻辑;3.配置num_replicas和自动扩缩容策略以应对流量波动;4.通过HTTP接口提供服务,并可设置max_batch_size优化吞吐量。为应对高并发,设计策略包括:
    文章 · python教程   |  1星期前  |   服务部署 高并发 异常检测 可扩展 RayServe 246浏览 收藏
  • Python源码对比与演进学习全攻略
    Python源码对比与演进学习全攻略
    对比Python源码版本能深入理解语言演进、机制与设计哲学,价值在于提升理解深度、调试能力、性能优化能力和参与开源动力;2.推荐用Git克隆CPython仓库并用gitdiff或可视化工具对比,聚焦版本如2.7→3.0(重大变革)、3.4→3.5(async/await引入)、3.8+(性能优化);3.常见设计模式包括渐进式优化、抽象接口统一,核心挑战是兼容性、性能与可维护性平衡、内存管理及GIL并发模型的持续演进。
    文章 · python教程   |  1星期前  |   性能优化 设计模式 演进历程 版本对比 Python源码 492浏览 收藏
  • PyCharm最新版功能全面解析
    PyCharm最新版功能全面解析
    选择PyCharm作为Python开发的IDE是因为其丰富的功能和不断更新的特性能提升开发效率和代码质量。新版PyCharm在以下方面有显著提升:1.增强的代码补全功能,使用新的机器学习模型提供更准确的补全建议;2.调试工具的显著提升,特别是对于多线程程序的调试支持;3.项目管理功能的提升,提供更强大的项目结构管理工具;4.更好的Git集成,提供更直观的提交界面和版本控制工具。
    文章 · python教程   |  1星期前  |   147浏览 收藏
  • Python异常处理技巧:try-except使用详解
    Python异常处理技巧:try-except使用详解
    Python处理异常的核心思想是使用try-except块捕获并响应运行时错误,以提升代码健壮性和用户体验。1.try-except结构允许针对不同异常类型编写具体处理逻辑,避免程序崩溃;2.最佳实践包括优先捕获具体异常而非宽泛的Exception,以便精准定位问题;3.else块用于执行仅在无异常时才应进行的操作;4.finally块确保无论是否出错资源都能被正确释放;5.异常记录推荐使用logging模块,并启用exc_info=True以保留堆栈信息,便于调试和分析;6.必要时可在低层级处理后重新抛
    文章 · python教程   |  1星期前  |   167浏览 收藏
  • Python快速读取大CSV方法分享
    Python快速读取大CSV方法分享
    处理大型CSV文件避免内存爆炸的方法有:1.分块读取,通过逐块处理降低内存占用;2.优化数据类型,如使用int8、float16或category类型减少内存消耗;3.选择合适工具,如Dask实现并行计算或使用pandas的chunksize参数分块读取;4.处理缺失值时根据数据特性选择填充策略,如均值、中位数或前后值填充。使用Dask可自动分块并行处理,而pandas则需手动循环处理每个chunk,同时结合dtype参数指定数据类型以进一步优化内存。
    文章 · python教程   |  1星期前  |   Python 内存优化 分块读取 大型CSV文件 数据类型优化 229浏览 收藏
  • Python如何计算百分位数?
    Python如何计算百分位数?
    百分位数用于描述数据分布,Python可通过NumPy和pandas计算。百分位数表示数据中特定比例的值小于等于该值,如第90百分位数。常用分位点包括25(下四分位数)、50(中位数)、75(上四分位数)。1.NumPy使用numpy.percentile(data,p)计算,支持多百分位输入列表;2.pandas通过df['col'].quantile(q)实现,参数q为0-1小数,亦支持多分位计算。二者均涉及插值方法,默认线性插值,可选lower、higher等策略,影响结果尤其在小样本时需注意。
    文章 · python教程   |  1星期前  |   204浏览 收藏
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
  • Golang深入理解GPM模型
    Golang深入理解GPM模型
    Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
    474次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    105次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    98次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    118次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    109次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    114次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码