-
- Python爬虫教程:requests+BeautifulSoup实战指南
- requests和BeautifulSoup组合适用于静态网页爬取,核心流程包括发送HTTP请求、解析HTML内容、提取目标数据。2.提取数据常用find()、find_all()方法,支持通过标签名、类名、ID及CSS选择器精准定位。3.常见错误包括网络请求失败、解析错误、动态加载内容和编码问题,可通过异常处理、重试机制、手动设置编码等方式应对。4.当面临动态渲染内容、复杂交互、大规模爬取或强反爬机制时,应考虑升级工具如Selenium、Playwright或Scrapy框架。
- 文章 · python教程 | 1个月前 | 330浏览 收藏
-
- Python傅里叶变换法检测周期异常数据
- 傅里叶变换适合周期性数据异常检测的原因是其能将重复模式分解为少数关键频率成分,异常会打破这种规律,在频域表现为新出现的高频分量、原有频率变化或宽频噪声增加。2.选择频率阈值的方法包括基于统计(Z-score、IQR、百分位数)、领域知识设定预期频率范围、基线学习法对比历史正常数据、自适应阈值应对动态变化及可视化辅助初步判断。3.实际应用挑战包括非平稳性数据导致FFT效果下降、频谱泄漏影响精度、计算资源消耗大、对细微异常不敏感、噪声干扰造成误报漏报以及频域结果解释复杂和“正常”定义模糊等问题。
- 文章 · python教程 | 1个月前 | Python 异常检测 傅里叶变换 周期性数据 频率阈值 347浏览 收藏
-
- PythonLabelEncoder使用详解
- LabelEncoder是sklearn.preprocessing中用于将类别型标签转换为数值型的工具,其核心作用是将文本类别映射为从0开始的整数。使用时需先导入并调用.fit_transform()方法完成训练与编码,输出结果为numpy数组;若需还原编码,可用.inverse_transform()方法。注意事项包括:不能直接对未fit的数据使用transform、编码顺序按字母排序而非出现顺序、不适用于多列特征处理,且无法自动处理新类别。实际应用中建议配合pandas使用,并保存已fit的编码器以
- 文章 · python教程 | 1个月前 | 370浏览 收藏
-
- Python语音识别教程:SpeechRecognition库使用详解
- 语音识别在Python中并不难,主要通过SpeechRecognition库实现。1.安装SpeechRecognition和依赖:执行pipinstallSpeechRecognition及pipinstallpyaudio,Linux或macOS可能需额外安装PortAudio开发库。2.实时录音识别:导入模块并创建Recognizer对象,使用Microphone监听音频,调用recognize_google方法进行识别,支持中文需加language="zh-CN"参数。3.处理本地音频文件:使用A
- 文章 · python教程 | 1个月前 | 210浏览 收藏
-
- FastAPI入门教程:PythonAPI开发指南
- FastAPI成为PythonAPI开发首选框架的原因包括高性能、出色的开发者体验和现代化设计。它基于Starlette和Pydantic,支持异步处理,配合Uvicorn服务器提升吞吐量;通过Python类型提示自动完成数据验证、序列化及交互式文档生成,极大简化开发流程;其Pythonic设计和模块化结构使学习曲线平缓,便于集成数据库和认证机制。使用FastAPI处理请求体时,借助Pydantic定义数据模型实现自动验证与解析,确保数据符合预期并减少错误。接口设计中,路由参数通过URL路径接收资源标识,
- 文章 · python教程 | 1个月前 | 127浏览 收藏
-
- JAX嵌套列表高效处理技巧
- 本文介绍了如何使用JAX的jax.tree_util.tree_map函数,结合Python内置的sum函数,高效地对包含多个结构相同子列表的列表进行规约操作。通过示例代码详细展示了规约过程,并解释了其背后的原理,帮助读者理解并掌握在JAX中处理复杂数据结构的有效方法。
- 文章 · python教程 | 1个月前 | 124浏览 收藏
-
- Selenium登录难题:爬虫为何总被拦截?
- 在使用Selenium进行网页自动化或爬取时,用户常遇到即使主浏览器已登录,自动化脚本仍提示登录的问题。这主要是因为Selenium启动的是一个全新的、独立的浏览器实例,它不共享主浏览器的会话信息或Cookie。因此,为了成功访问需要登录的页面,需要通过编程方式在Selenium控制的浏览器中完成登录流程,或者管理和加载会话Cookie,以维持登录状态。
- 文章 · python教程 | 1个月前 | 229浏览 收藏
-
- Pandas行组合生成与统计教程
- 本教程详细介绍了如何利用Pandas、itertools和collections.Counter库,高效地遍历DataFrame的每一行,生成行内所有可能的元素组合(从单个元素到所有元素),并进一步统计这些组合在整个DataFrame中的出现频率。这对于数据模式发现、特征工程或市场篮子分析等场景具有重要应用价值,通过清晰的步骤和代码示例,帮助读者掌握这一高级数据处理技巧。
- 文章 · python教程 | 1个月前 | 215浏览 收藏
-
- Streamlit异常检测应用搭建指南
- 使用Streamlit构建异常检测Web应用的核心答案是:它能快速将复杂模型封装成交互式界面,无需前端开发即可直观展示异常识别能力;2.构建流程包括:安装依赖(streamlit、pandas、scikit-learn等)、用st.file_uploader支持用户上传CSV文件、选择数值列并简单预处理、通过滑块设置模型参数(如contamination和n_estimators)、运行IsolationForest模型预测异常值、用st.dataframe展示结果、用matplotlib绘制异常分布图;
- 文章 · python教程 | 1个月前 | 模型 Web应用 异常检测 用户体验 Streamlit 258浏览 收藏
-
- Python图像风格迁移实现方法详解
- 神经风格转换(NST)的核心原理是利用深度学习中的卷积神经网络(CNN)解耦图像的内容与风格并进行重组。其关键组成部分包括:1.使用预训练的CNN(如VGG16或VGG19)作为特征提取器,深层特征表示内容,浅层特征结合Gram矩阵表示风格;2.内容损失和风格损失的构建,分别通过均方误差衡量生成图像与内容图像在深层特征的相似性、以及与风格图像在多个层的Gram矩阵之间的差异;3.优化过程,通过调整生成图像的像素值最小化总损失函数,通常使用Adam或L-BFGS优化器进行数百至数千次迭代;4.图像后处理,包
- 文章 · python教程 | 1个月前 | 295浏览 收藏
-
- Pandas动态窗口计算方法详解
- 在Pandas中实现动态窗口计算的核心方法是结合rolling()函数与自定义窗口大小函数,并通过apply()方法应用计算逻辑。1.准备时间序列索引的Series或DataFrame;2.定义动态窗口函数,根据当前索引返回窗口起止位置;3.使用rolling()创建滚动对象,设置窗口长度与最小数据点;4.通过apply()方法将计算函数作用于每个动态窗口。处理缺失数据可通过忽略、填充或自定义逻辑实现;优化性能可采用向量化操作、缓存、并行计算等方式;动态窗口适用于股票交易、网络安全、传感器数据分析等场景,
- 文章 · python教程 | 1个月前 | Pandas 时间序列数据 rolling() apply() 动态窗口计算 253浏览 收藏
-
- Python协程入门:async/await详解
- 协程是Python中通过async/await语法实现的异步编程机制,其本质是一种轻量级线程,由程序员控制切换,相比多线程更节省资源、切换开销更小,适合处理大量并发I/O操作。1.协程函数通过asyncdef定义,调用后返回协程对象,需放入事件循环中执行;2.使用await等待协程或异步操作完成;3.并发执行多个任务可通过asyncio.gather()或asyncio.create_task()实现;4.注意避免直接调用协程函数、混用阻塞代码及确保使用支持异步的库。掌握这些关键步骤可提升程序效率。
- 文章 · python教程 | 1个月前 | 399浏览 收藏
-
- AmazonLinux2023安装安全pip指南
- 本文档旨在指导如何在AmazonLinux2023上安装与系统Python版本对应的、经过安全增强的pip包。通过安装官方提供的python3-pip包,确保使用的pip工具与系统环境兼容,并获得AmazonLinux2023提供的安全保障。
- 文章 · python教程 | 1个月前 | 121浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 数说Social Research-社媒分析AI Agent
- 数说Social Research是数说故事旗下社媒智能研究平台,依托AI Social Power,提供全域社媒数据采集、垂直大模型分析及行业场景化应用,助力品牌实现“数据-洞察-决策”全链路支持。
- 6次使用
-
- 先见AI
- 先见AI,北京先智先行旗下企业级商业智能平台,依托先知大模型,构建全链路智能分析体系,助力政企客户实现数据驱动的科学决策。
- 7次使用
-
- 标探长AI标书
- 标探长AI是专注于企业招投标领域的AI标书智能系统,10分钟生成20万字标书,提升效率10倍!融合专家经验和中标案例,提供专业内容和多元标书输出,助力企业中标。
- 14次使用
-
- 网弧软著AI
- SEO 网弧软著 AI 是一款 AI 驱动的软件著作权申请平台,提供全套材料自动化生成、代码 AI 生成、自动化脚本等功能,高效、可靠地解决软著申请难题。
- 10次使用
-
- 华文笔杆
- 华文笔杆是国内领先的AI公文写作平台,专为机关单位、企事业单位和教育机构设计,解决公文写作效率低、格式乱、专业性弱的问题。覆盖通知、报告、讲话稿等10类高频场景,服务百万用户,是政务、企业文书工作的智能助手。
- 9次使用