-
- Python打造工业4.0设备健康管理系统思路
- Python之所以成为构建工业4.0设备健康管理系统的核心工具,1)其拥有丰富的库生态,如NumPy、Pandas用于数据处理,Scikit-learn、TensorFlow、PyTorch用于机器学习建模,paho-mqtt、python-opcua用于工业通信;2)Python语法简洁,学习曲线平缓,便于IT与OT人员协作;3)具备强大的数据处理能力,尤其擅长处理工业场景中的时序、异构和脏数据;4)社区活跃,问题解决效率高,持续推动技术迭代。
- 文章 · python教程 | 1天前 | Python 机器学习 工业4.0 预测性维护 设备健康管理 490浏览 收藏
-
- Python词云制作教程与参数解析
- Python制作词云的核心在于wordcloud库,其关键参数包括font_path、background_color、width、height、max_words、stopwords、mask等。要生成词云,首先需安装wordcloud、matplotlib和jieba库;其次对中文文本进行分词处理;接着创建WordCloud对象并设置相关参数;最后使用matplotlib显示结果。自定义字体通过font_path参数实现,确保中文字体正常显示;背景图片则通过mask参数加载图片数组实现形状控制。常见挑
- 文章 · python教程 | 1天前 | 484浏览 收藏
-
- Python操作EPUB:epub库使用全解析
- Python中操作EPUB电子书的核心是使用ebooklib库。1.安装方法为pipinstallebooklib;2.使用epub.read_epub()读取文件;3.通过book.metadata访问元数据,如标题和作者;4.使用book.spine访问章节内容;5.修改book对象后用epub.write_epub()保存修改;6.创建新EPUB需构建Book对象并添加内容;7.提取文本需结合BeautifulSoup解析HTML内容;8.添加新章节需创建EpubHtml对象并加入spine;9.修
- 文章 · python教程 | 1天前 | Python 文件操作 ePub 电子书 ebooklib 313浏览 收藏
-
- Python内存管理机制全解析
- Python通过引用计数、垃圾回收(GC)和内存池机制管理内存。1.引用计数是核心机制,对象的引用数为0时立即释放内存,但无法处理循环引用;2.GC模块解决循环引用问题,通过标记清除不可达对象,默认自动运行,也可手动触发;3.内存池(pymalloc)提升小对象操作性能,减少系统调用开销;4.实际应用中需注意全局变量、缓存、多线程传递等导致的内存泄漏,可使用sys.getrefcount、gc.get_objects等工具分析内存使用情况。
- 文章 · python教程 | 1天前 | 166浏览 收藏
-
- PythonPEP8规范详解与应用
- PEP8是Python官方推荐的代码规范标准,能提升代码可读性和协作效率。1.缩进建议使用4个空格,函数、类之间用两个空行隔开,操作符和逗号后加空格。2.命名推荐小写加下划线,类名用驼峰法,常量全大写,避免单字符命名及易混淆字母。3.每行不超过79字符,优先用括号换行。4.注释要简洁明了,函数和类应写docstring说明用途、参数和返回值,并保持同步更新。遵守这些核心规范有助于写出更清晰、统一的代码。
- 文章 · python教程 | 1天前 | 406浏览 收藏
-
- Python变量基础教程,新手入门必看详解
- Python变量是存储数据的容器,通过赋值操作定义,如x=10;其类型由值自动推断,常见类型包括整数、浮点数、字符串等;变量命名需以字母或下划线开头,使用小写和下划线分隔的描述性名称;作用域分为全局和局部,分别在函数外和函数内访问,修改全局变量需用global声明。1.变量赋值通过等号实现,无需声明类型;2.类型包括int、float、str、bool、list、tuple、dict;3.命名规则要求字母或下划线开头,区分大小写,避免关键字;4.作用域分为全局和局部,局部变量在函数外不可见。
- 文章 · python教程 | 1天前 | 变量作用域 变量赋值 变量类型 变量命名规则 Python变量 486浏览 收藏
-
- Python打造智能客服:NLP对话系统教程
- 要用Python开发一个智能客服系统,需聚焦自然语言处理与对话管理。1.确定技术路线:选用Rasa构建对话逻辑,结合Transformers、spaCy等处理文本,并用Flask/FastAPI提供接口;2.实现意图识别与实体提取:通过训练NLU模型判断用户意图及关键信息;3.设计对话管理:利用domain.yml和stories定义回复逻辑与流程;4.部署上线:训练模型后部署服务并通过API接入前端应用。整个过程需注重数据质量与真实场景覆盖,以提升准确率与用户体验。
- 文章 · python教程 | 1天前 | 181浏览 收藏
-
- Python中%运算符的字符串格式化用法
- %s在Python中是格式化字符串的占位符,用于插入字符串值。1)基本用法是将变量值替换%s,如"Hello,%s!"%name。2)可以处理任何类型的数据,因为Python会调用对象的__str__方法。3)对于多个值,可使用元组,如"Mynameis%sandIam%syearsold."%(name,age)。4)尽管在现代编程中.format()和f-strings更常用,%s在老项目和某些性能需求中仍有优势。
- 文章 · python教程 | 1天前 | 112浏览 收藏
-
- PyCharm显示项目列表技巧分享
- 在PyCharm中显示和管理所有项目可以通过以下步骤实现:1)进入“Settings”或“Preferences”,导航到“Appearance&Behavior”->“SystemSettings”,勾选“Openprojectinnewwindow”和“Confirmwindowtoreopenprojects”,重新启动PyCharm以在“WelcomeScreen”显示所有项目;2)使用“ProjectToolWindow”将多个项目添加到一个窗口中,通过“File”->“Open”并
- 文章 · python教程 | 1天前 | 286浏览 收藏
-
- PythonFlask教程:快速开发Web应用入门
- Flask适合开发轻量级Web应用和API。1.它是一个微框架,提供基本路由、请求处理和模板渲染功能,不强制预设规则,给予开发者高度自由选择权;2.学习曲线平直,从简单“HelloWorld”开始逐步扩展功能,易于上手;3.社区活跃,拥有大量扩展支持数据库集成、表单验证、用户认证等需求;4.Flask项目结构灵活常见包括app.py入口、config.py配置、templates/静态资源目录、models.py数据模型及views.py视图逻辑;5.面对数据库集成、用户权限管理、表单验证、部署与模块化挑
- 文章 · python教程 | 1天前 | 277浏览 收藏
-
- Pandas数据表转置方法全解析
- 在Pandas中实现数据表的行列转置最直接的方式是使用.T属性或.transpose()方法。1..T属性是最简洁的方法,直接在DataFrame对象后加.T即可完成转置;2..transpose()方法与.T效果相同,但提供更明确的函数调用形式。转置后数据类型可能变为通用类型如object,需检查并使用astype()转换;原来的行索引变列索引,列索引变行索引,可使用reset_index()调整。处理大数据时可能内存不足,可通过分块处理、使用Dask、优化数据类型或避免不必要的转置解决。
- 文章 · python教程 | 1天前 | 大数据处理 Pandas .T属性 数据表转置 .transpose() 433浏览 收藏
-
- Python数据平滑:移动平均技巧解析
- 移动平均是一种常用的数据平滑方法,通过计算连续数据点的平均值来减少噪声并突出趋势。Python中可用NumPy和Pandas实现,如使用np.convolve或pd.Series.rolling().mean()进行简单移动平均(SMA),以及pd.Series.ewm().mean()进行指数移动平均(EMA)。窗口大小的选择需根据数据周期性、实际效果及领域知识调整,过小则平滑不足,过大则可能丢失特征。移动平均的变种包括:1.SMA所有点权重相同;2.加权移动平均(WMA)为不同点分配不同权重;3.EM
- 文章 · python教程 | 1天前 | 181浏览 收藏
-
- Pythonturtle是什么?绘图原理全解析
- Turtle模块是Python中用于绘图的工具,通过模拟乌龟在屏幕上移动和绘图来实现。1)创建turtle对象并使用forward()和right()方法可以绘制简单图形,如正方形。2)通过orbit()函数可以模拟复杂的物理现象,如行星轨道。3)使用时需注意性能和代码可维护性问题。4)最佳实践包括简化代码、使用颜色和样式、增加互动性。Turtle模块适合初学者和图形编程爱好者,提供了一个探索计算机图形学的平台。
- 文章 · python教程 | 1天前 | 276浏览 收藏
-
- Python数据建模:Statsmodels入门指南
- Statsmodels与Scikit-learn在数据建模中的角色差异在于1)Statsmodels侧重统计推断,用于分析变量间关系及其统计显著性;2)Scikit-learn注重预测和模式识别,追求模型的泛化能力。Statsmodels适用于理解“为什么”和“怎么样”,提供详细统计指标如p值、置信区间等;而Scikit-learn适用于解决“是什么”和“能做什么”,提供多种机器学习算法及预测性能评估指标。两者互补,可结合使用以增强建模效果。
- 文章 · python教程 | 1天前 | 289浏览 收藏
-
- TF-IDF差异解析:Scikit-learn实战教程
- 本文旨在解释Scikit-learn中TfidfVectorizer计算TF-IDF值时与手动计算结果差异的原因。通过分析IDF计算公式的不同,揭示了Scikit-learn如何通过平滑处理避免零IDF值和除零错误,从而提供更稳定的文本向量化结果。本文将详细介绍Scikit-learn使用的IDF计算公式,并通过示例进行对比,帮助读者更好地理解和使用TfidfVectorizer。
- 文章 · python教程 | 1天前 | 335浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 99次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 90次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 110次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 101次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 101次使用