-
- Python中int是什么?整数类型详解
- int是Python中的整数类型关键字,用于表示任意精度的整数。1.int类型没有上限,适合大数据和科学计算。2.整数操作直观,不需数据类型转换。3.Python3中的整数不可变,每次操作创建新对象。4.使用NumPy可提高大数运算性能。5.整数除法可用地板除(//)获取整数结果。
- 文章 · python教程 | 2星期前 | 455浏览 收藏
-
- Python定时任务有哪些实现方式
- Python实现定时任务有多种方法,根据需求选择合适的方案即可。1.简单延时任务可使用time.sleep(),适合轻量级、周期固定的逻辑;2.定时任务调度可使用schedule库,支持秒、分、小时等周期执行,语法简单适合脚本级别任务;3.专业级任务推荐APScheduler,支持动态管理任务、持久化存储等功能,适合生产环境;4.系统级任务可通过操作系统工具(如cron或任务计划程序)实现,不依赖Python进程运行,更稳定可靠。
- 文章 · python教程 | 2星期前 | 334浏览 收藏
-
- Python排序技巧:sorted与lambda使用全解析
- Python中实现排序最常用的是sorted()函数和list.sort()方法。1.sorted()不改变原始数据,返回新列表;2.list.sort()是原地排序,直接修改原列表;3.两者都支持key参数,常使用lambda表达式定义排序规则。例如:可使用lambda按元组的某个元素、字符串长度、字典键值等排序;4.多条件排序可通过返回元组实现,如先按部门升序再按薪水降序;5.对于嵌套结构,可结合lambda提取深层数据进行排序。二者选择上,若需保留原始数据或处理非列表数据用sorted(),内存敏感
- 文章 · python教程 | 2星期前 | 196浏览 收藏
-
- Python语音转文字教程:SpeechRecognition实战教程
- 要实现实时语音转文字,可使用Python的SpeechRecognition库配合pyaudio进行音频捕获和识别。首先安装SpeechRecognition和pyaudio(可通过下载wheel文件解决安装问题),然后使用Google语音识别API或其他API如recognize_sphinx进行识别。为实现持续实时识别,需在循环中分段录音并处理,通过pause_threshold和phrase_time_limit控制录音结束条件,并使用adjust_for_ambient_noise减少背景噪音。选
- 文章 · python教程 | 2星期前 | Python 语音识别 SpeechRecognition 实时语音转文字 pyaudio 127浏览 收藏
-
- PythonPub/Sub消息过滤失败解决办法
- 本文档旨在解决PythonPub/Sub订阅者客户端在使用过滤器时无法拉取消息的问题。通过分析问题原因和提供的解决方案,帮助开发者理解Pub/Sub订阅过滤器生效的机制,并提供避免此问题的实用方法,确保消息的正确接收和处理。
- 文章 · python教程 | 2星期前 | 443浏览 收藏
-
- Python分词教程:jieba使用全解析
- jieba受欢迎的原因是其高效算法和广泛应用场景。1.提供全模式、精确模式和搜索引擎模式三种分词方式。2.支持词性标注、关键词提取和文本聚类等高级功能。3.可通过加载自定义词典优化分词效果。4.提供并行分词功能,提升大规模文本处理速度。
- 文章 · python教程 | 2星期前 | 183浏览 收藏
-
- Python操作CAD,ezdxf库入门教程
- Python操作CAD图纸主要通过ezdxf库实现,1.ezdxf将DXF文件解析为Drawing对象,支持创建、读取、修改各种CAD实体;2.安装使用pipinstallezdxf;3.核心概念包括模型空间、图纸空间和实体类型如线、圆、文本等;4.代码可创建添加几何图形并保存为DXF文件;5.读取文件后可遍历实体进行内容和属性修改;6.支持的实体类型涵盖LINE、CIRCLE、ARC、TEXT、MTEXT、POLYLINE、LWPOLYLINE、INSERT、BLOCK、ATTDEF、ATTRIB、DI
- 文章 · python教程 | 2星期前 | 236浏览 收藏
-
- Python操作HDF5文件与h5py存储技巧
- Python操作HDF5文件的核心库是h5py,它将HDF5的层次结构映射为Python对象,使用户能像操作NumPy数组和字典一样高效处理数据。1.文件(File)是顶层容器,通过h5py.File()创建或打开;2.群组(Group)用于组织结构,类似目录;3.数据集(Dataset)存储实际数据,支持NumPy数组操作;4.属性(Attribute)用于附加元数据,增强自描述性。此外,性能优化包括:5.分块(Chunking)提升随机访问效率;6.压缩(Compression)减少I/O开销;7.合
- 文章 · python教程 | 2星期前 | 181浏览 收藏
-
- Python操作Neo4j:py2neo图数据库入门指南
- 使用Python操作Neo4j最常用的方式是通过py2neo库实现。1.安装py2neo:pipinstallpy2neo;2.连接数据库:提供URI和认证信息;3.创建节点和关系:使用Node和Relationship类;4.查询数据:支持Cypher语句和参数化查询;5.批量操作和事务处理:提高效率和一致性;6.其他功能:自动合并、删除节点/关系、添加索引等。掌握这些核心步骤可以高效地构建图数据应用。
- 文章 · python教程 | 2星期前 | 166浏览 收藏
-
- Python分层抽样与随机抽样教程
- 随机抽样使用Pandas的sample()函数实现,适合分布均匀的数据;分层抽样通过Scikit-learn的train_test_split或groupby加sample实现,保留原始分布;选择方法需考虑数据均衡性、目标变量和数据量大小。1.随机抽样用df.sample(frac=比例或n=数量)并可划分训练集和测试集;2.分层抽样使用train_test_split时设置stratify=y,或对DataFrame按标签分组后抽样;3.选择策略包括判断类别均衡性、是否存在分类目标变量及数据量是否足够大
- 文章 · python教程 | 2星期前 | 146浏览 收藏
-
- Python图像修复:深度学习技术解析
- 是的,Python可以实现图像修复,尤其基于深度学习的方法如GAN效果更佳。核心方法包括:1.数据准备需大量高质量图像及对应mask;2.选择基于CNN的GAN模型如ContextualAttentionGAN;3.生成器采用编码器-解码器结构结合注意力机制生成修复图像;4.判别器判断生成图像真实性;5.使用对抗损失、内容损失、感知损失等多类损失函数优化模型;6.经迭代训练后部署模型进行图像修复。评估可通过PSNR、SSIM等指标与主观判断结合,挑战在于处理复杂场景、高分辨率图像及不同类型缺失,此外还可选
- 文章 · python教程 | 2星期前 | Python 深度学习 GAN 图像修复 损失函数 318浏览 收藏
-
- 管理员运行Python脚本的几种方式
- 本文介绍如何在Windows操作系统中通过Python脚本启动另一个脚本并赋予其管理员权限。通过创建辅助Python脚本并利用os.system函数调用runas命令,可以有效地提升目标脚本的权限,从而执行需要管理员权限的操作,例如修改系统配置或访问受保护的资源。本文提供详细步骤和示例代码,帮助开发者轻松实现此功能。
- 文章 · python教程 | 2星期前 | 235浏览 收藏
-
- Python单元测试怎么用?unittest使用教程
- 在Python中,实现单元测试最常用且内置的框架是unittest。unittest框架的核心组件包括TestCase(测试用例)、TestSuite(测试套件)、TestRunner(测试运行器)和TestLoader(测试加载器)。1.TestCase是所有测试的基础,提供断言方法和测试生命周期方法;2.TestSuite用于组合多个测试用例或套件;3.TestRunner负责执行测试并报告结果;4.TestLoader用于发现和加载测试用例。测试用例组织建议与源代码分离,测试文件命名以test_开头
- 文章 · python教程 | 2星期前 | 219浏览 收藏
-
- Python如何做自然语言处理?NLTK库入门教程
- 要使用NLTK进行自然语言处理,首先需安装库并下载必要资源;其次掌握分词、词性标注、去除停用词和词形还原等基本操作;最后可应用于情感分析、关键词提取、文本分类和实体识别等场景。具体步骤为:1.安装NLTK并下载常用语料如punkt、averaged_perceptron_tagger和wordnet;2.使用word_tokenize实现分词;3.利用pos_tag进行词性标注;4.通过stopwords模块去除停用词;5.借助WordNetLemmatizer进行词形还原;6.结合实际需求开展各类NLP
- 文章 · python教程 | 2星期前 | Python 自然语言处理 分词 nltk 词形还原 207浏览 收藏
-
- Python打造语音助手与合成技术全解析
- Python开发语音合成首选库包括pyttsx3、gTTS和云服务API。1.pyttsx3支持离线使用,依赖系统TTS引擎,适合简单提示音场景;2.gTTS基于Google翻译服务,音质更自然,适合需联网的应用;3.云服务如GoogleCloudTTS、AWSPolly提供高质量人声,适合商业级应用。提升自然度方面:1.通过engine.getProperty('voices')选择合适音色,匹配语音助手“人设”;2.使用engine.setProperty('rate',value)调整语速,确保播报
- 文章 · python教程 | 2星期前 | 327浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 100次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 92次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 111次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 103次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 104次使用