-
- Python爬虫实战:Scrapy框架应用解析
- Scrapy框架实现网络爬虫的核心步骤如下:1.安装Scrapy并创建项目,使用scrapystartproject命令搭建项目结构;2.在spiders目录编写爬虫类,定义请求发起、响应解析及数据提取逻辑;3.通过items.py定义结构化数据模型;4.在pipelines.py中构建数据处理流程,包括清洗、验证和存储;5.配置settings.py参数优化爬取效率,如设置USER_AGENT、DOWNLOAD_DELAY、CONCURRENT_REQUESTS等;6.运行爬虫命令scrapycrawl
- 文章 · python教程 | 1个月前 | 436浏览 收藏
-
- Python轻松实现GPT-2文本生成方法
- 要使用Python实现GPT-2文本生成,核心在于加载预训练模型并调用生成接口。1.使用HuggingFace的transformers库安装依赖(transformers和torch);2.通过pipeline快速生成或手动加载模型与分词器进行更精细控制;3.设置生成参数如max_length、do_sample、top_k、top_p以平衡多样性与连贯性;4.提供合适的prompt引导生成内容;5.考虑部署时的资源消耗、生成速度、内容安全及依赖管理问题。整个过程依托于GPT-2的自回归预测机制,基于已
- 文章 · python教程 | 1个月前 | 436浏览 收藏
-
- VSCode远程Jupyter目录设置教程
- 本文旨在解决在VSCode中连接远程JupyterNotebook时,相对路径导入失效的问题。通过利用VSCodeJupyter扩展的jupyter.runStartupCommands配置,我们可以在Jupyter内核启动时自动将工作目录切换到当前Notebook文件所在的目录,从而确保相对导入的正确性,有效解决ModuleNotFoundError等问题,提升远程开发体验。
- 文章 · python教程 | 1个月前 | 436浏览 收藏
-
- PythonPlaywright网页自动化实战教程
- 选择Playwright而非Selenium的主要原因是其架构更优、原生支持异步、内置自动等待机制以及一致的多浏览器支持;2.Playwright通过直接与浏览器通信提升执行效率和稳定性;3.其异步API设计使并发操作更自然高效;4.自动等待元素状态减少了显式等待代码,提升脚本可靠性;5.支持Chromium、Firefox和WebKit且API统一,便于跨浏览器测试;6.处理动态内容可使用page.wait_for_selector等待元素出现;7.文件上传通过set_input_files方法实现;8
- 文章 · python教程 | 1个月前 | Python 健壮性 Playwright 网页自动化 PageObjectModel 436浏览 收藏
-
- Python大数据处理:Pandas优化技巧全解析
- 处理Pandas大数据的核心技巧包括:1.数据类型优化,如降精度数值型和转字符串列为分类类型以减少内存占用;2.分块处理大文件避免内存溢出;3.优先使用向量化操作而非循环;4.选择高效存储格式如Parquet或Feather提升读写效率;5.谨慎使用apply()避免非必要迭代。这些方法能显著提高内存利用率与计算效率,解决大数据场景下的性能瓶颈问题。
- 文章 · python教程 | 1个月前 | 436浏览 收藏
-
- Python监测化工反应釜压力异常方法
- Python检测化工反应釜压力异常波动的核心步骤包括:1.数据采集与预处理,2.异常检测算法选择与实施,3.警报与可视化;具体而言,首先通过传感器和工业系统采集数据,并使用pandas和numpy进行清洗与平滑处理;接着,结合基于阈值、统计学(如Z-score)、时间序列(如动态阈值)及机器学习方法(如IsolationForest)等多算法识别异常;最后,通过可视化工具(如matplotlib、plotly)展示数据与异常点,并利用smtllib或Twilio实现报警功能。此外,定义异常需结合工艺特性、
- 文章 · python教程 | 1个月前 | Python 异常检测算法 压力异常监测 化工反应釜 实时性能 436浏览 收藏
-
- Python中int类型详解及用法示例
- int是Python中的整数类型关键字,用于表示任意精度的整数。1.int类型没有上限,适合大数据和科学计算。2.整数操作直观,不需数据类型转换。3.Python3中的整数不可变,每次操作创建新对象。4.使用NumPy可提高大数运算性能。5.整数除法可用地板除(//)获取整数结果。
- 文章 · python教程 | 3星期前 | 436浏览 收藏
-
- 正向预查与负向预查有什么不同
- 正向预查和负向预查的区别在于匹配条件是否成立;正向预查用(?=...)表示后面必须满足条件,如匹配后跟数字的字母[a-zA-Z](?=\d),负向预查用(?!...)表示后面不能满足条件,如匹配不跟数字的字母[a-zA-Z](?!\d);两者都不捕获内容,仅作判断;实际应用中可用于密码验证、排除关键词等场景,例如检查密码含数字和小写字母:^(?=.\d)(?=.[a-z]).{7,}$。
- 文章 · python教程 | 1星期前 | 436浏览 收藏
-
- Python异步编程:async/await使用全解析
- 在Python中,async/await用于处理异步编程,适用于I/O密集型任务。1)定义异步函数,使用async关键字。2)在异步函数中,使用await等待异步操作完成。3)使用asyncio.run()运行主函数。4)注意错误处理和性能优化,避免过度使用。
- 文章 · python教程 | 2个月前 | 435浏览 收藏
-
- PythonCLI开发:Click库实用技巧
- Click库是开发PythonCLI工具的首选,其优势体现在参数解析、子命令管理和错误处理等方面。使用Click开发CLI工具的步骤包括:1.安装Click;2.使用@click.command()装饰器定义命令;3.使用@click.option()或@click.argument()定义选项和参数;4.自动生成帮助信息并处理类型转换。设计用户友好的CLI界面需注意:1.提供清晰的帮助信息;2.合理命名选项(短选项+长选项);3.设置默认值减少输入;4.输入验证与友好错误提示;5.添加进度条提升体验;6
- 文章 · python教程 | 2个月前 | 435浏览 收藏
-
- Python流处理:Kafka与Spark实战教程
- Kafka是流数据处理的首选消息队列,1.因为其高吞吐量与低延迟,能应对每秒数百万条消息;2.具备分布式、持久化的提交日志设计,支持数据回溯与多消费者独立消费;3.分区机制实现横向扩展,适应大规模数据;4.提供可靠的数据存储层,增强系统容错性与灵活性。PySpark在流数据处理中扮演“大脑”角色,StructuredStreaming相较于SparkStreaming具有优势:1.采用持续增长无限表模型,简化编程逻辑;2.统一批处理与流处理API,降低学习曲线;3.支持精确一次语义,确保数据一致性;4.内
- 文章 · python教程 | 2个月前 | Python spark kafka 流数据处理 StructuredStreaming 435浏览 收藏
-
- Python非结构化数据处理:文本图像特征提取方法
- 处理非结构化数据的关键在于特征提取。针对文本,常用方法包括词袋模型、TF-IDF、词嵌入,并可用sklearn、gensim等库实现;对于图像,传统方法如HOG、SIFT结合深度学习CNN模型如ResNet可提取有效特征;实战中需注意数据清洗、归一化及降维处理。Python提供了强大的工具支持,使这一过程高效且便捷。
- 文章 · python教程 | 2个月前 | 435浏览 收藏
-
- Pythonif语句使用教程详解
- Python中的if语句格式是:1.if条件:代码块;2.elif另一个条件:代码块;3.else:代码块。该结构通过条件、冒号和缩进来控制程序流程,支持复杂逻辑处理。
- 文章 · python教程 | 2个月前 | 435浏览 收藏
-
- Python流量异常检测特征工程技巧
- 网络流量异常检测的关键特征包括基于流的统计特征、时间序列特征和负载内容特征。1.基于流的统计特征涵盖流量大小、持续时间、速率、协议分布、端口统计、标志位、数据包大小分布和连接状态;2.时间序列特征关注流量随时间的变化模式,例如连接速率突增;3.负载内容特征通过计算熵值判断数据的随机性。此外,特征选择应根据检测目标(如DDoS、端口扫描)调整。Python中用于异常检测的主要库包括:1.Scikit-learn,提供IsolationForest、One-ClassSVM、LOF等经典算法;2.PyOD,集
- 文章 · python教程 | 1个月前 | Python 机器学习 性能优化 特征工程 网络流量异常检测 435浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 515次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 777次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 793次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 813次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 876次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 763次使用