-
- Python量化交易入门:自动化交易技巧解析
- 用Python实现自动化交易的核心在于构建数据驱动的交易系统,其核心步骤包括:1.获取并清洗市场数据;2.开发和验证交易策略;3.进行回测以评估策略表现;4.对接API实现实盘交易;5.执行风险管理;6.持续监控与优化。具体工具方面,Pandas和NumPy用于数据处理与计算,Tushare和AkShare用于获取金融数据,Backtrader和Zipline用于策略回测,Scikit-learn、TensorFlow或PyTorch可用于构建机器学习模型,Matplotlib和Seaborn负责可视化分
- 文章 · python教程 | 3星期前 | 158浏览 收藏
-
- Pygame高级功能详解与实战技巧
- 掌握Pygame进阶技巧可提升游戏流畅度与逻辑性,1.使用精灵组管理对象并通过groupcollide优化碰撞检测,支持自动移除碰撞对象并可用掩码实现像素级检测;2.通过自定义事件与定时器实现周期任务如敌人生成,注意精度限制;3.图像加载需用convert_alpha处理透明通道,动画可通过帧列表切换实现;4.声音控制需初始化mixer模块,合理使用music与Sound对象并调节音量与播放模式。
- 文章 · python教程 | 3星期前 | 158浏览 收藏
-
- 正则分组捕获是什么?怎么使用?
- 分组捕获是正则表达式中通过圆括号()将匹配内容的某部分单独捕获并保存的功能;1.它允许提取关键信息、替换文本及复用模式,例如(\d{3})-(\d{3}-\d{4})可分别捕获电话号码的前三位和后七位;2.可通过$1、$2或语言特定方式引用分组内容;3.支持命名分组如(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2}),提升代码可读性;4.使用时应注意避免过度嵌套、合理使用非捕获分组(?:...)、注意不同语言差异及替换时写法统一。
- 文章 · python教程 | 2星期前 | 158浏览 收藏
-
- Python实现主成分分析方法解析
- 在Python中实现PCA可以通过手动编写代码或使用scikit-learn库。手动实现PCA包括以下步骤:1)中心化数据,2)计算协方差矩阵,3)计算特征值和特征向量,4)排序并选择主成分,5)投影数据到新空间。手动实现有助于深入理解算法,但scikit-learn提供更便捷的功能。
- 文章 · python教程 | 2星期前 | 158浏览 收藏
-
- TatSu方括号忽略问题怎么解决
- 本文旨在解决TatSu语法解析器中方括号被意外忽略的问题。通过分析问题代码,指出@@whitespace指令的错误使用是导致该问题的根本原因,并提供修改方案,即将@@whitespace指令设置为None或False来禁用空格处理,从而确保方括号能被正确解析。
- 文章 · python教程 | 1星期前 | 158浏览 收藏
-
- Python内存管理与防泄漏方法
- Python内存泄漏的常见原因包括保留不必要的对象引用、未关闭外部资源、循环引用处理不当、C扩展模块问题及缓存机制设计不当。1.无意中保留对象引用,如全局变量持续增长,闭包捕获变量未释放;2.未正确关闭文件、数据库连接等资源,导致底层资源未释放;3.虽有GC处理循环引用,但在复杂结构中可能无法及时回收;4.C扩展未正确管理内存或引用计数;5.缓存无淘汰策略导致无限增长。可通过使用上下文管理器、慎用全局变量、使用弱引用、及时解除引用、优化数据结构、谨慎使用C扩展、周期性清理等方法避免泄漏。检测工具包括tra
- 文章 · python教程 | 6天前 | 内存泄漏 垃圾回收 Python内存管理 引用计数 循环引用 158浏览 收藏
-
- Python用户行为漏斗分析方法详解
- 漏斗模型是用户行为分析的基石,因为它提供结构化视角,将复杂的用户旅程拆解为可量化的阶段,帮助识别流失点并驱动产品优化。通过定义关键步骤、清洗数据、构建用户路径、计算转化率及可视化,我们能清晰追踪用户从初始接触到最终转化的全过程。它不仅揭示用户在哪个环节流失,还为进一步的定性分析和策略制定提供依据,是一种将用户体验流程化的思维框架。
- 文章 · python教程 | 3天前 | 158浏览 收藏
-
- TCN时间卷积异常检测Python实现方法
- TCN异常检测的核心步骤包括:1.数据预处理,涉及清洗、归一化和滑动窗口切分;2.构建TCN模型架构,采用因果卷积、膨胀卷积、残差连接及堆叠TCN块;3.选择损失函数(如MSE)和优化器(如Adam)进行训练;4.设定异常判别模块,基于重建误差和阈值判断异常。TCN通过因果卷积确保时序一致性,膨胀卷积扩大感受野,残差连接缓解梯度问题,具备并行计算优势,适合长序列处理。评估时可使用精确率、召回率、F1分数、ROC/AUC或PR曲线,无监督场景依赖误差分布分析。优化方向包括超参数调优、数据预处理改进、动态阈值
- 文章 · python教程 | 2天前 | Python 时间序列 异常检测 重建误差 TCN 158浏览 收藏
-
- Python中如何进行数据归一化处理?
- <p>Python中进行数据归一化的常见方法有两种:1)最小-最大归一化,将数据缩放到0到1之间,使用公式Xnorm=(X-Xmin)/(Xmax-Xmin);2)Z-score标准化,将数据转换为均值为0,标准差为1的分布,使用公式Z=(X-μ)/σ。两种方法各有优劣,选择时需考虑数据特性和应用场景。</p>
- 文章 · python教程 | 2个月前 | 157浏览 收藏
-
- PyCharm首次使用必看设置攻略
- 第一次打开PyCharm时,应先创建新项目并选择虚拟环境,然后熟悉编辑器区、工具栏、导航栏和状态栏。设置Darcula主题和Consolas字体,利用智能提示和调试工具提高效率,并学习Git集成。
- 文章 · python教程 | 2个月前 | 157浏览 收藏
-
- PythonWebSocket通信终极实现指南
- 在Python中实现WebSocket通信可以使用websockets或aiohttp库,我推荐使用websockets库。1)安装并导入websockets库。2)创建异步服务器和客户端示例代码。3)注意WebSocket的全双工特性和异步编程的重要性。4)考虑重连机制、性能优化和安全性等挑战。通过这些步骤和最佳实践,可以构建高效、可靠的WebSocket通信应用。
- 文章 · python教程 | 2个月前 | 157浏览 收藏
-
- Python语言有什么用?优势与应用场景深度解析
- Python的优势在于其简单易学、语法清晰,适用于多种编程范式,广泛应用于Web开发、数据科学与机器学习、人工智能、自动化脚本和游戏开发。Python是一门功能强大且易用的编程语言,适合各种开发需求。
- 文章 · python教程 | 2个月前 | 157浏览 收藏
-
- PyCharm添加解释器问题及解决方案
- PyCharm无法添加解释器的原因主要有Python环境配置不正确、PyCharm设置问题、缓存问题、权限问题、解释器识别问题和版本问题。1.检查Python环境,确保正确安装并在PATH中。2.在PyCharm中,点击File->Settings->Project:[你的项目名]->PythonInterpreter,选择并配置合适的解释器。3.清除PyCharm缓存并重启IDE。4.以管理员身份运行PyCharm或更改解释器文件权限。5.手动指定Python解释器路径。6.如果使用A
- 文章 · python教程 | 2个月前 | 157浏览 收藏
-
- Python手把手教学:轻松搞定pip安装(超简单教程)
- pip在Python3.4及以上版本中默认安装。如果未安装,可通过下载get-pip.py并运行pythonget-pip.py来安装。使用pip3避免版本混淆,建议使用镜像源并定期更新pip。
- 文章 · python教程 | 1个月前 | 157浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 104次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 98次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 117次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 108次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 112次使用