-
- Python变量定义与使用全攻略
- 在Python中,变量的定义和使用非常直观:1.定义变量时无需声明类型,Python会自动推断类型;2.使用变量时直接引用变量名;3.变量有全局和局部作用域,需注意使用;4.变量名是对象的引用,需小心处理可变对象;5.推荐使用蛇形命名法;6.可以使用type()函数检查变量类型。通过这些经验和技巧,可以更好地利用Python的灵活性,同时避免常见的陷阱。
- 文章 · python教程 | 2个月前 | 277浏览 收藏
-
- eval在Python中的用法及表达式执行函数详解
- eval函数在Python中可以将字符串形式的表达式解析并执行,但使用时需谨慎。1)基本用法是将字符串表达式直接执行,如eval("2+2")。2)存在安全风险,切勿直接使用用户输入,因为可能执行恶意代码。3)性能上,eval较慢,可用compile提高,如compile("2+2","<string>","eval")。4)动态创建对象或调用方法时可用,但需确保代码可控和安全。总之,eval强大但需谨慎使用。
- 文章 · python教程 | 1个月前 | 277浏览 收藏
-
- Python高性能计算代码加速优化秘籍
- Python能胜任高性能计算吗?答案是肯定的,只要方法得当。关键在于优化方式:1.尽量使用内置函数和标准库,例如列表推导式、map()、itertools等,它们内部用C实现,效率更高;2.用NumPy替代原生列表进行数值计算,其底层为C编写,速度显著提升,尤其适合大规模数据操作;3.使用Cython或Numba加速热点代码,如嵌套循环或数学计算,其中Numba通过装饰器即时编译提升性能;4.利用并发与并行技术,如multiprocessing用于CPU密集型任务,concurrent.futures和a
- 文章 · python教程 | 1个月前 | 277浏览 收藏
-
- PyCharm报错?手把手教你修复解释器配置!
- 解决Pycharm中"无解释器"问题的方法是:1.确保系统已安装Python;2.在Pycharm中选择"AddLocalInterpreter"并输入正确的Python路径;3.如果问题persists,尝试重启Pycharm、检查路径、更新Pycharm或重新添加解释器。
- 文章 · python教程 | 1个月前 | 277浏览 收藏
-
- Python能干嘛?程序员必看的实用技能科普
- Python的常见用途包括数据科学和机器学习、web开发、自动化任务和脚本编写、游戏开发以及教育。1)在数据科学和机器学习中,Python的库如NumPy、Pandas等使数据处理和分析变得简洁高效。2)在web开发中,Django和Flask等框架使得构建web应用变得简单。3)Python广泛用于自动化任务和脚本编写,提高工作效率。4)在游戏开发中,Pygame库使创建简单游戏变得容易。5)在教育领域,Python因其简单易学的语法而受欢迎。
- 文章 · python教程 | 1个月前 | 277浏览 收藏
-
- Python反射机制,动态获取对象属性原来这么简单!
- 反射是程序运行时动态获取对象信息或调用方法的能力,Python通过字符串操作属性或方法实现。1.反射允许动态访问对象属性,如getattr(obj,'name')。2.常用函数包括getattr、hasattr、setattr、delattr,用于获取、判断、设置和删除属性。3.应用于插件系统、ORM映射、命令路由等场景,例如根据输入命令调用对应方法。4.使用时需注意避免滥用、性能影响及外部输入带来的安全风险,建议优先使用默认值和判断属性存在性来增强代码健壮性。
- 文章 · python教程 | 1个月前 | Python 反射 getattr hasattr setattr 277浏览 收藏
-
- Python中int类型详解与使用方法
- Python中的int代表整数类型,其特点包括:1.无限精度,可以表示非常大的数值;2.支持负数和零;3.支持基本运算和高级运算,如加减乘除、取模和幂运算;4.整数除法使用//运算符;5.int()函数可用于类型转换,但需注意潜在的ValueError异常。
- 文章 · python教程 | 4星期前 | 277浏览 收藏
-
- Python高效计算技巧全解析
- Python能胜任高性能计算吗?答案是肯定的,只要方法得当。关键在于优化方式:1.尽量使用内置函数和标准库,例如列表推导式、map()、itertools等,它们内部用C实现,效率更高;2.用NumPy替代原生列表进行数值计算,其底层为C编写,速度显著提升,尤其适合大规模数据操作;3.使用Cython或Numba加速热点代码,如嵌套循环或数学计算,其中Numba通过装饰器即时编译提升性能;4.利用并发与并行技术,如multiprocessing用于CPU密集型任务,concurrent.futures和a
- 文章 · python教程 | 4星期前 | 277浏览 收藏
-
- Python向量化运算怎么实现?
- 在Python中,使用NumPy库可以实现向量化操作,提升代码效率。1)NumPy的ndarray对象支持高效的多维数组操作。2)NumPy允许进行逐元素运算,如加法。3)NumPy支持复杂运算,如统计和线性代数。4)注意数据类型一致性、内存管理和广播机制。
- 文章 · python教程 | 3星期前 | 277浏览 收藏
-
- Python代码规范有哪些?PEP8详解
- PEP8是Python官方推荐的代码规范标准,能提升代码可读性和协作效率。1.缩进建议使用4个空格,函数、类之间用两个空行隔开,操作符和逗号后加空格。2.命名推荐小写加下划线,类名用驼峰法,常量全大写,避免单字符命名及易混淆字母。3.每行不超过79字符,优先用括号换行。4.注释要简洁明了,函数和类应写docstring说明用途、参数和返回值,并保持同步更新。遵守这些核心规范有助于写出更清晰、统一的代码。
- 文章 · python教程 | 3星期前 | 277浏览 收藏
-
- Python人脸识别教程:dlib库安装使用全解析
- dlib库实现人脸检测的核心优势在于其基于C++的高性能、HOG+SVM模型的鲁棒性及一体化功能。1.dlib核心用C++编写,运行速度快,适合实时应用;2.默认的人脸检测器结合HOG特征和SVM分类器,在光照和姿态变化下表现稳定;3.提供CNN模型进一步提升精度,适用于复杂场景;4.除人脸检测外还支持关键点检测、对象跟踪等功能,减少依赖管理复杂性;5.安装可通过conda简化流程,避免编译问题;6.可通过图像预处理、调整参数和使用多线程优化性能与精度。
- 文章 · python教程 | 3星期前 | 277浏览 收藏
-
- Python知识图谱构建全攻略
- 构建Python知识图谱需先确定知识范围与粒度,再提取知识点及其关系,接着使用工具表达为图结构,并持续迭代更新。具体步骤如下:1.确定知识范围和粒度:根据目标用户明确涵盖内容(如语法、标准库、第三方库等),并划分初级到应用层的层次;2.提取知识点与关系:识别实体(函数、模块、类等)及关系(属于、调用、继承等),可通过手动整理、NLP自动抽取或AST代码解析实现;3.使用图数据库或可视化工具表达:可选用Neo4j存储查询,Graphviz或Cytoscape.js进行可视化展示;4.不断迭代和扩展:定期更新
- 文章 · python教程 | 3星期前 | 277浏览 收藏
-
- Python中end的作用及使用方法
- 在Python中,print函数的end参数用于指定输出结束时的字符。1)默认情况下,print函数会在输出后添加换行符,但通过end参数可以自定义结束符,如空格。2)使用end参数可以实现不换行的循环输出,如创建进度条。3)使用时需注意保留换行符和避免输出混乱。通过恰当使用end参数,可以提升输出效果和用户体验。
- 文章 · python教程 | 2星期前 | 277浏览 收藏
-
- Python人脸检测教程:dlib库使用指南
- dlib库实现人脸检测的核心优势在于其基于C++的高性能、HOG+SVM模型的鲁棒性及一体化功能。1.dlib核心用C++编写,运行速度快,适合实时应用;2.默认的人脸检测器结合HOG特征和SVM分类器,在光照和姿态变化下表现稳定;3.提供CNN模型进一步提升精度,适用于复杂场景;4.除人脸检测外还支持关键点检测、对象跟踪等功能,减少依赖管理复杂性;5.安装可通过conda简化流程,避免编译问题;6.可通过图像预处理、调整参数和使用多线程优化性能与精度。
- 文章 · python教程 | 1星期前 | 277浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 39次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 37次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 41次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 49次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 40次使用