• 类变量与实例变量区别解析
    类变量与实例变量区别解析
    类变量属于类本身,被所有实例共享,修改会影响全部实例;实例变量属于每个实例,独立存在,互不影响。类变量适用于共享数据如常量、计数器,实例变量用于对象独有属性如姓名、状态。可变类变量易引发意外共享,继承中子类可遮蔽父类类变量,而实例变量通过super()继承并保持独立。
    文章 · python教程   |  2星期前  |   357浏览 收藏
  • Python语言应用与优势详解
    Python语言应用与优势详解
    Python的优势在于其简单易学、语法清晰,适用于多种编程范式,广泛应用于Web开发、数据科学与机器学习、人工智能、自动化脚本和游戏开发。Python是一门功能强大且易用的编程语言,适合各种开发需求。
    文章 · python教程   |  1星期前  |   357浏览 收藏
  • 多进程还是多线程?Python开发必选指南
    多进程还是多线程?Python开发必选指南
    CPU密集型任务应选多进程,因GIL限制多线程无法并行计算;I/O密集型任务宜用多线程,因等待期间可释放GIL实现高效并发。
    文章 · python教程   |  1星期前  |   多进程 多线程 gil CPU密集型 I/O密集型 357浏览 收藏
  • Python图像处理教程:Pillow库入门指南
    Python图像处理教程:Pillow库入门指南
    Pillow是Python中常用的图像处理库,适合实现裁剪、缩放、旋转等基础操作。安装使用pipinstallpillow并导入Image类即可开始操作,常见问题包括路径错误和格式不支持。主要功能包括resize()调整尺寸、crop()裁剪区域、rotate()旋转图像、transpose()翻转图像。颜色转换可通过convert()方法实现,如转灰度图或去除透明通道。添加水印或文字需使用ImageDraw和ImageFont模块,通过draw.text()绘制文字并指定字体、颜色和位置。Pillow功
    文章 · python教程   |  2个月前  |   356浏览 收藏
  • Python音频处理常用库有哪些?
    Python音频处理常用库有哪些?
    Python有多个音频处理库,适合不同场景。1.PyDub适合剪辑拼接等简单编辑,依赖FFmpeg,支持MP3、WAV等格式;2.LibROSA用于音乐分析,如节奏检测、频谱分析,常用于机器学习特征提取;3.SoundFile和PyAudio支持文件读写及实时录音播放,适合底层操作;4.NumPy、SciPy用于信号运算,matplotlib用于可视化,SpeechRecognition实现语音识别,TorchAudio/TensorFlowAudio用于深度学习,各库组合使用能满足多样化需求。
    文章 · python教程   |  2个月前  |   356浏览 收藏
  • Pythoninput函数详解与使用教程
    Pythoninput函数详解与使用教程
    input函数在Python中用于从用户获取输入。其基本用法是通过提示用户输入并存储在变量中,示例:user_input=input("请输入你的名字:")。此外,input函数返回字符串类型,需要使用int()或float()进行类型转换以处理数字输入,示例:age=int(input("请输入你的年龄:"))。使用input时需注意其阻塞性和可能的无效输入,因此应使用异常处理来确保程序健壮性,示例:try:age=int(input("请输入你的年龄:"))exceptValueError:print
    文章 · python教程   |  2个月前  |   356浏览 收藏
  • input在Python中是什么意思?详解输入函数用法
    input在Python中是什么意思?详解输入函数用法
    在Python中,"input"这个词通常指的是input()函数,它是Python语言中用于接收用户输入的内置函数。这个函数允许程序在运行时从用户那里获取数据,使得交互式程序的开发变得更加简单和直观。当我们谈到input()函数的用法时,我们不仅仅是在讨论如何使用它来获取用户输入,更是在探讨如何通过这种方式来增强程序的交互性和灵活性。让我们深入探讨一下input()函数的使用方法,并分享一些我在这方面的经验和见解。让我们从input()函数的基础用法开始:user_input=in
    文章 · python教程   |  2个月前  |   356浏览 收藏
  • Python自动化测试:Selenium实战教程
    Python自动化测试:Selenium实战教程
    SeleniumWebDriver的安装与基本配置步骤如下:首先,确保已安装Python和pip;其次,通过pipinstallselenium命令安装Selenium库;然后,根据目标浏览器下载对应的WebDriver(如ChromeDriver、GeckoDriver等),并确认其版本与浏览器兼容;最后,将WebDriver添加到系统PATH环境变量中或在代码中指定其路径。完成以上步骤后即可编写自动化测试脚本,并通过异常处理机制确保脚本健壮性。
    文章 · python教程   |  2个月前  |   356浏览 收藏
  • Python词云制作:jieba分词实战教程
    Python词云制作:jieba分词实战教程
    用Python制作词云图的步骤如下:1.安装jieba、wordcloud和matplotlib库;2.使用jieba进行中文分词并过滤停用词;3.利用wordcloud生成词云,指定字体路径等参数;4.通过matplotlib显示词云图像;5.可选使用mask参数自定义词云形状;6.对于专业性强的文本可加载自定义词典提升分词准确性;7.调整colormap参数或自定义颜色函数优化颜色搭配;8.面对大规模数据时采用分块处理或提取关键词减少计算量。
    文章 · python教程   |  1个月前  |   Python 词云图 356浏览 收藏
  • Python实现LOF异常检测教程
    Python实现LOF异常检测教程
    LOF算法通过比较数据点与其邻居的局部密度识别异常点。1.安装scikit-learn库并使用LocalOutlierFactor类实现异常检测;2.选择合适的n_neighbors参数,避免对噪声敏感或漏检局部异常,可通过尝试不同值、领域知识或肘部法则确定;3.处理高维数据时,可采用降维(如PCA)、特征选择或改用IsolationForest等更适合高维的算法;4.评估LOF性能可使用精确率、召回率、F1值和AUC等指标,但在缺乏标签的情况下需依赖无监督评估方法或专家判断。
    文章 · python教程   |  1个月前  |   Python 异常检测 scikit-learn LOF n_neighbors 356浏览 收藏
  • 身份证验证正则表达式合集
    身份证验证正则表达式合集
    身份证验证正则表达式应包含18位结构,前6位地址码,中间8位出生日期,后3位顺序码及最后1位校验码,其中校验码可为数字或X;常用正则表达式为^\d{17}[\dXx]$,若需兼容15位可使用^(\\d{15}$|^\d{17}[\dXx])$;实际应用时应注意输入处理前后空格、字母统一大小写、长度限制、单独验证出生日期有效性,并结合代码实现更严格的逻辑判断。
    文章 · python教程   |  1个月前  |   356浏览 收藏
  • Python处理缺失值方法:pandas数据清洗技巧
    Python处理缺失值方法:pandas数据清洗技巧
    处理缺失值的方法包括检查、删除、填充和标记。1.使用isna()或isnull()检查缺失值,通过sum()统计每列缺失数量,或用any().any()判断整体是否存在缺失;2.采用dropna()删除缺失比例高的行或列,subset参数指定检查范围,inplace=True直接修改原数据;3.用fillna()填充缺失值,数值型可用均值、中位数,类别型用众数,时间序列可用前后值填充;4.对于缺失本身含信息的情况,可新增列标记是否缺失,并将缺失作为特征使用,提升模型表现。
    文章 · python教程   |  1个月前  |   356浏览 收藏
  • SHAP解析异常检测模型决策方法
    SHAP解析异常检测模型决策方法
    SHAP通过计算每个特征对预测结果的贡献度,帮助解释复杂异常检测模型的决策。2.首先需要训练好的模型,如Autoencoder、GAN、IsolationForest等。3.然后选择一个异常样本进行解释。4.选择合适的Explainer,如TreeExplainer、DeepExplainer或KernelExplainer。5.准备代表正常数据的背景数据集。6.计算Shapley值以量化特征影响。7.使用ForcePlot、SummaryPlot和DependencePlot等工具进行可视化和深入分析。
    文章 · python教程   |  1个月前  |   异常检测 SHAP 模型解释 特征贡献 Shapley值 356浏览 收藏
  • PythonZipfile压缩文件教程详解
    PythonZipfile压缩文件教程详解
    Python压缩文件的核心是zipfile模块,它提供了创建、读取、写入和提取ZIP文件的功能。1.创建ZIP文件:使用ZipFile类配合'w'模式,将指定文件列表写入新压缩包。2.添加文件到现有ZIP:通过'a'模式追加文件而不覆盖原文件。3.提取ZIP文件:用'r'模式结合extractall()方法将内容解压到指定目录。4.读取ZIP内容:调用namelist()方法获取压缩包内所有文件列表。5.指定压缩级别:通过compresslevel参数设置压缩比,范围0-9,9为最高但较慢。6.处理大型文
    文章 · python教程   |  1个月前  |   Python 加密 文件压缩 zipfile 文件解压 356浏览 收藏
  • Pythonturtle绘图入门教程详解
    Pythonturtle绘图入门教程详解
    Python中的turtle模块是Python标准库的一部分,无需额外安装即可使用。1)导入模块并创建turtle对象;2)通过调用对象的方法控制乌龟移动和绘图,如前进、转向;3)使用循环和条件语句绘制复杂图形;4)确保代码最后加上turtle.done()防止窗口闪退;5)优化性能可设置fastest速度并批量绘制线条,turtle模块适合初学者和快速绘图。
    文章 · python教程   |  1个月前  |   356浏览 收藏
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
  • Golang深入理解GPM模型
    Golang深入理解GPM模型
    Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
    474次学习
查看更多
AI推荐
  • PandaWiki开源知识库:AI大模型驱动,智能文档与AI创作、问答、搜索一体化平台
    PandaWiki开源知识库
    PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
    232次使用
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    1025次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    1053次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    1060次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    1128次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码