-
- Python自动化测试教程:Selenium与Pytest实战教学
- Python实现自动化测试的核心方案是结合Selenium和Pytest。1.首先,安装Python及相关库(Selenium、Pytest)并配置浏览器驱动;2.接着,编写测试脚本,使用Selenium模拟用户操作,通过Pytest管理测试流程及断言;3.然后,采用PageObjectModel提升脚本可维护性;4.此外,合理选择元素定位策略、使用显式等待机制增强稳定性;5.最后,利用Pytest的Fixture、参数化、标记等功能提升测试灵活性与可管理性,结合报告插件生成详细测试报告。
- 文章 · python教程 | 5个月前 | 428浏览 收藏
-
- PythonHDF5数据持久化实现教程
- HDF5是一种高效的二进制数据存储格式,适合处理结构化的大规模科学数据。1.它支持多维数组、元数据和压缩,读写速度快、占用空间小;2.跨平台兼容性强,被多种语言支持,利于协作与归档;3.在Python中可通过h5py或PyTables库操作,使用简便;4.适用于数据量大、需部分读写、长期保存的场景,如机器学习和科研数据管理;5.注意避免频繁修改已有数据集,压缩需权衡性能,合理设计组结构以优化管理。
- 文章 · python教程 | 5个月前 | 428浏览 收藏
-
- Python实现XML-RPC分布式调用的方法
- XML-RPC在现代分布式系统中已不主流,但仍有特定适用场景。1.它适合遗留系统集成、低频简单RPC需求及教学用途;2.其优点包括协议简单、跨语言支持、防火墙友好和可读性强;3.缺点为性能差、数据类型受限、同步阻塞及缺乏高级特性;4.相比RESTfulAPI的资源导向风格和gRPC的高性能二进制通信,XML-RPC更适合对性能要求不高且需要快速实现的场景。
- 文章 · python教程 | 5个月前 | 428浏览 收藏
-
- try-except-else-finally执行流程详解
- else块在try-except-else-finally结构中的关键作用是:1.提高代码清晰性,明确标识仅在try成功时执行的逻辑;2.避免异常误捕获,防止将else中的错误与try中的异常混为一谈;3.增强可读性,使try块聚焦潜在异常代码,else处理依赖成功执行的后续操作。例如在文件读取场景中,try负责打开和读取文件,except处理异常,else用于返回结果并确认成功,finally确保资源释放,从而实现职责分离、逻辑清晰的异常处理机制。
- 文章 · python教程 | 5个月前 | Python 异常处理 工作流程 try-except-else-finally else块 428浏览 收藏
-
- Python调试技巧:快速定位代码错误方法
- 调试Python代码的核心在于选择合适的工具和方法。1.使用print语句可在小型脚本中快速查看变量和执行流程;2.使用pdb调试器可逐行执行代码、查看变量并设置断点;3.使用IDE(如VSCode、PyCharm)可图形化调试,提升效率;4.处理异常通过try...except结构防止程序崩溃并定位错误;5.使用logging模块记录日志,便于后续分析;6.编写单元测试确保代码质量并发现潜在问题;7.使用静态分析工具(如pylint、mypy)检查代码错误;8.调试多线程/多进程程序需借助专用工具识别竞
- 文章 · python教程 | 4个月前 | 单元测试 日志记录 调试器 Python调试 print语句 428浏览 收藏
-
- Python如何检测量子硬件异常?
- Python本身不直接检测量子计算中的硬件异常,但通过数据分析和机器学习间接实现。1.使用Qiskit、Cirq等框架获取实验和校准数据;2.通过运行门保真度测试、相干时间测量等实验提取关键指标;3.利用Python进行数据预处理和特征工程,如转换测量结果为量化指标;4.应用统计分析、离群点检测、变化点检测等方法识别异常;5.使用机器学习模型学习正常行为模式并标记异常;6.通过Matplotlib、Seaborn等库可视化结果并生成报告。常见异常信号包括门保真度下降、相干时间缩短、读出错误率升高等,Pyt
- 文章 · python教程 | 4个月前 | Python 机器学习 量子计算 数据分析 硬件异常 428浏览 收藏
-
- Pandasread_feather与pyarrow依赖解析指南
- pandas.read_feather方法在处理Feather文件时,对pyarrow包存在强制依赖。无论用户配置何种dtype_backend,Pandas内部都会调用pyarrow库来执行底层的Feather文件读写操作。这种设计利用了pyarrow在数据序列化和性能方面的优势,确保了FeatherI/O的高效与稳定。因此,使用read_feather必须预先安装pyarrow。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- Pythonre.sub()替换方法全解析
- Python的re.sub()函数用于正则表达式替换,基本用法是替换固定字符串,如将“apple”替换成“orange”。1.使用正则表达式可替换动态内容,如替换数字为“#NUMBER#”。2.常见场景包括清理空格、去除标点、匿名化手机号。3.替换时可用函数动态生成内容,如将数字乘以2。4.注意事项包括大小写敏感、贪婪匹配、性能问题及分组替换技巧。掌握这些方面可灵活应对多数替换需求。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- Pythonctypes参数详解与使用技巧
- 本文深入探讨ctypes库中函数原型参数处理的细节,特别是DEFAULT_ZERO标志与显式默认值之间的关键区别。通过分析WlanRegisterNotification函数的实际案例,揭示DEFAULT_ZERO的特殊行为及其可能导致的TypeError,并提供两种有效的参数声明与处理方法:使用参数标志指定默认值,以及更推荐的通过argtypes结合Python包装函数来管理参数,旨在提升ctypes接口的健壮性和可读性。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- Python发邮件带附件教程详解
- 使用Python发送带附件的邮件,需先开启邮箱SMTP服务并获取授权码。1.导入smtplib和email模块;2.配置发件人、收件人、SMTP服务器及授权码等基本信息;3.使用MIMEMultipart构建邮件内容并添加正文和附件;4.通过SMTP_SSL连接服务器并发送邮件;5.处理异常并确保服务器正确关闭。注意事项包括确认文件路径、控制附件大小、处理中文文件名编码问题、选择正确的SMTP端口,并可通过循环批量添加多个附件。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- Python缓存实现与内存优化技巧
- Python中实现数据缓存的核心是提升数据访问速度,减少重复计算或I/O操作。1.可使用字典实现简单缓存,但无过期机制且易导致内存溢出;2.functools.lru_cache适用于函数返回值缓存,自带LRU淘汰策略;3.cachetools提供多种缓存算法,灵活性高但需额外安装;4.Redis或Memcached支持分布式和持久化缓存,适合高并发场景但部署复杂。选择时应考虑数据量、并发性、失效策略、是否需要持久化及部署成本。同时需监控缓存命中率、淘汰次数、延迟和内存使用。为防止缓存穿透、击穿和雪崩,可
- 文章 · python教程 | 4个月前 | Python 分布式缓存 内存优化 数据缓存 缓存策略 428浏览 收藏
-
- Python内存管理机制全解析
- Python通过引用计数、垃圾回收(GC)和内存池机制管理内存。1.引用计数是核心机制,对象的引用数为0时立即释放内存,但无法处理循环引用;2.GC模块解决循环引用问题,通过标记清除不可达对象,默认自动运行,也可手动触发;3.内存池(pymalloc)提升小对象操作性能,减少系统调用开销;4.实际应用中需注意全局变量、缓存、多线程传递等导致的内存泄漏,可使用sys.getrefcount、gc.get_objects等工具分析内存使用情况。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- PyCharm解释器路径快速查找教程
- 在PyCharm中,快速找到项目解释器位置的方法是:1)点击右上角“Settings”图标,选择“Project:[你的项目名称]”->“PythonInterpreter”;2)使用快捷键Ctrl+Shift+Alt+S(Windows)或Cmd+Shift+Alt+S(Mac),然后按上述路径找到解释器。知道解释器位置有助于处理特殊开发需求,如安装非PyPI包或命令行运行脚本。
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- PythonElementTree解析XML教程
- Python处理XML数据首选ElementTree,其核心步骤为:1.解析XML;2.查找元素;3.访问数据;4.修改结构;5.写回文件。ElementTree无需额外安装,功能强大且直观高效,支持从字符串或文件解析,通过find()、findall()等方法查找元素,并能创建、修改和删除节点。处理大型XML时推荐使用iterparse()实现流式解析,避免内存问题。对于命名空间,需手动拼接QName或通过字典辅助构造完整标签名。此外,Python还有lxml(性能强、支持XPath/XSLT)、min
- 文章 · python教程 | 4个月前 | 428浏览 收藏
-
- Python数据看板教程:Dash框架入门详解
- Dash框架是Python制作数据看板的成熟解决方案,无需前端知识即可构建交互式Web应用;2.核心构成包括dash.Dash实例、app.layout定义界面结构、@app.callback实现交互逻辑;3.回调函数通过Input触发、Output更新、State传递状态,实现动态响应;4.使用html.Div和dcc组件搭建基础布局,结合内联样式或外部CSS优化外观;5.推荐使用DashBootstrapComponents(dbc)库提升界面美观性与响应式布局;6.通过dcc.Loading、错误处
- 文章 · python教程 | 4个月前 | Python 回调函数 交互式 数据看板 Dash框架 428浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- Golang深入理解GPM模型
- Golang深入理解GPM调度器模型及全场景分析,希望您看完这套视频有所收获;包括调度器的由来和分析、GMP模型简介、以及11个场景总结。
- 474次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3349次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3560次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3592次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4717次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3966次使用

