当前位置:首页 > 文章列表 > Golang > Go问答 > 连接张量流模型的尝试未成功

连接张量流模型的尝试未成功

来源:stackoverflow 2024-02-07 10:18:22 0浏览 收藏

怎么入门Golang编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《连接张量流模型的尝试未成功》,涉及到,有需要的可以收藏一下

问题内容

我正在尝试连接到使用tensorflowـmodel_serving提供的修改后的resnet模型

tensorflow_model_server --port=8500 --rest_api_port=8501 \
                        --model_name=resnet_model \
                        --model_base_path=/home/pc3/deeplearning/models/resnet

我的模型在我从tensorflow hub获得的原始resnet模型上有一个附加层。 它期望对 256x256 像素图像进行分类,并且只有两个输出节点。

这是我在此处文档的帮助下想出的 go.cv 接口:

package main

import (
    "fmt"
    "image"
    "log"

    "gocv.io/x/gocv"
)

func main() {

    net := gocv.readnetfromtensorflow("/home/pc3/deeplearing/models/resnet/1")

    imagefilepath := "./1.jpg"
    img := gocv.imread(imagefilepath, gocv.imreadanycolor)
    if img.empty() {
        log.panic("can not read image file : ", imagefilepath)
        return
    }

    blob := gocv.blobfromimage(img, 1.0, image.pt(256, 256), gocv.newscalar(0, 0, 0, 0), true, false)
    defer blob.close()

    // feed the blob into the classifier
    net.setinput(blob, "input")

    // run a forward pass thru the network
    prob := net.forward("softmax")
    defer prob.close()

    // reshape the results into a 1x1000 matrix
    probmat := prob.reshape(1, 2)
    defer probmat.close()

    // determine the most probable classification, and display it
    _, maxval, _, maxloc := gocv.minmaxloc(probmat)
    fmt.printf("maxloc: %v, maxval: %v\n", maxloc, maxval)

}

但出现此运行时错误:

terminate called after throwing an instance of 'cv::exception'
  what():  opencv(4.6.0) /tmp/opencv/opencv-4.6.0/modules/dnn/src/tensorflow/tf_importer.cpp:2986: error: (-215:assertion failed) netbinsize || nettxtsize in function 'populatenet'

sigabrt: abort
pc=0x7fe95f86b00b m=0 sigcode=18446744073709551610
signal arrived during cgo execution

goroutine 1 [syscall]:
runtime.cgocall(0x4abc50, 0xc00005fda8)
        /usr/local/go/src/runtime/cgocall.go:157 +0x5c fp=0xc00005fd80 sp=0xc00005fd48 pc=0x41f39c
gocv.io/x/gocv._cfunc_net_readnetfromtensorflow(0x223a020)
        _cgo_gotypes.go:6044 +0x49 fp=0xc00005fda8 sp=0xc00005fd80 pc=0x4a7569
gocv.io/x/gocv.readnetfromtensorflow({0x4e7fcf?, 0x428d87?})
        /home/pc3/go/pkg/mod/gocv.io/x/[email protected]/dnn.go:280 +0x5e fp=0xc00005fde8 sp=0xc00005fda8 pc=0x4a815e
main.main()
        /home/pc3/go/src/test-go-ml/main.go:13 +0x51 fp=0xc00005ff80 sp=0xc00005fde8 pc=0x4a89b1
runtime.main()
        /usr/local/go/src/runtime/proc.go:250 +0x212 fp=0xc00005ffe0 sp=0xc00005ff80 pc=0x44f892
runtime.goexit()
        /usr/local/go/src/runtime/asm_amd64.s:1571 +0x1 fp=0xc00005ffe8 sp=0xc00005ffe0 pc=0x4780a1

我可以使用这个 python 代码片段与模型无缝通信:

from urllib import response
import requests
import base64
import cv2
import json
import numpy as np
from keras.applications.imagenet_utils import decode_predictions
 
image = cv2.imread("10.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (256, 256))
image = np.expand_dims(image, axis=0)
image = np.true_divide(image, 255)
 
data = json.dumps({"signature_name":"serving_default", "instances": image.tolist()})

url = "http://localhost:8501/v1/models/resnet_model:predict"

response = requests.post(url, data=data, headers = {"content_type": "application/json"})

predictions = json.loads(response.text)

感谢您帮助解决此问题,因为官方文档确实缺乏,而且我找不到任何有关此问题的教程。


正确答案


如果有人感兴趣,这里是我们找到的完整解决方案:

package main

import (
    "bytes"
    "encoding/json"
    "image"
    "io"
    "log"
    "net/http"
    "os"

    "github.com/barnex/matrix"
    "gocv.io/x/gocv"
    "gorgonia.org/tensor"
)

type Data struct {
    Signature_name string        `json:"signature_name"`
    Instances      []interface{} `json:"instances"`
}

func main() {

    imageFilePath := "1.jpeg"
    mat := gocv.IMRead(imageFilePath, gocv.IMReadAnyColor)
    if mat.Empty() {
        log.Panic("Can not read Image file : ", imageFilePath)
        return
    }
    resizeImage := gocv.NewMat()
    gocv.Resize(mat, &resizeImage, image.Point{X: 256, Y: 256}, 0, 0, gocv.InterpolationNearestNeighbor)

    img := resizeImage.Clone()
    gocv.CvtColor(resizeImage, &img, gocv.ColorBGRToRGB)
    a := tensor.New(tensor.WithBacking(img.ToBytes()))

    backing := a.Data().([]byte)
    backing2 := make([]float64, len(backing))
    for i := range backing {
        x := float64(backing[i]) / 255
        backing2[i] = x
    }

    matrix := matrix.ReshapeD3(backing2, [3]int{256, 256, 3})

    var dim []interface{}

    dim = append(dim, []interface{}{matrix}...)
    data := Data{
        Signature_name: "serving_default",
        Instances:      dim,
    }

    // send marshalled `data` to the Model
    url := "http://localhost:8501/v1/models/resnet_model:predict"

    payloadBuf := new(bytes.Buffer)
    json.NewEncoder(payloadBuf).Encode(data)

    req, _ := http.NewRequest("POST", url, payloadBuf)

    client := &http.Client{}
    res, err := client.Do(req)
    if err != nil {
        log.Fatal(err)
        return
    }

    defer res.Body.Close()
    io.Copy(os.Stdout, res.Body)
}

到这里,我们也就讲完了《连接张量流模型的尝试未成功》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

版本声明
本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
如何将 widget.NewMultiLineEntry() 滚动到底部?如何将 widget.NewMultiLineEntry() 滚动到底部?
上一篇
如何将 widget.NewMultiLineEntry() 滚动到底部?
在 Go 语言中如何编写数组的映射并添加到 JSON 文件中?
下一篇
在 Go 语言中如何编写数组的映射并添加到 JSON 文件中?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    17次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    13次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    12次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    17次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码