变分自编码器实现图像压缩的指南
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《变分自编码器实现图像压缩的指南》,聊聊,我们一起来看看吧!
变分自编码器(Variational Autoencoder,VAE)是一种无监督学习的神经网络,用于图像压缩和生成。相比传统自编码器,VAE可以重建输入图像,还能生成与之类似的新图像。其核心思想是将输入图像编码为潜在变量的分布,并从中进行采样以生成新的图像。VAE的独特之处在于使用变分推断来训练模型,通过最大化观测数据与生成数据之间的下界来实现参数学习。这种方法使得VAE能够学习到数据的潜在结构和生成新样本的能力。VAE已经在许多领域取得了显著的成功,包括图像生成、属性编辑和图像重建等任务。
VAE(变分自编码器)的结构与自编码器类似,由编码器和解码器两部分组成。编码器将输入图像压缩成潜在变量的分布,包括均值向量和方差向量。解码器从潜在变量中采样生成新的图像。为了使潜在变量的分布更合理,VAE引入了KL散度的正则化项,使潜在变量的分布更接近标准正态分布。这样做可以提高模型的表达能力和生成能力。
下面以MNIST手写数字数据集为例,介绍VAE的实现过程。
首先,我们需要导入必要的库和数据集。
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), ]) train_dataset = datasets.MNIST(root='./data/', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
接下来,定义编码器和解码器的网络结构。
# 定义编码器 class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.fc1 = nn.Linear(128 * 7 * 7, 256) self.fc21 = nn.Linear(256, 20) # 均值向量 self.fc22 = nn.Linear(256, 20) # 方差向量 def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.relu(self.conv3(x)) x = x.view(-1, 128 * 7 * 7) x = nn.functional.relu(self.fc1(x)) mean = self.fc21(x) log_var = self.fc22(x) return mean, log_var # 定义解码器 class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.fc1 = nn.Linear(20, 256) self.fc2 = nn.Linear(256, 128 * 7 * 7) self.conv1 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1) self.conv2 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1) self.conv3 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=1, padding=1) def forward(self, x): x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = x.view(-1, 128, 7, 7) x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.sigmoid(self.conv3(x)) return x # 定义VAE模型 class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.encoder = Encoder() self.decoder = Decoder() def reparameterize(self, mean, log_var): std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps * std + mean def forward(self, x): mean, log_var = self.encoder(x)
接下来是VAE模型的前向传播过程,其中包括从潜在变量中采样生成新的图像,以及计算重构误差和KL散度的正则化项。
z = self.reparameterize(mean, log_var) x_recon = self.decoder(z) return x_recon, mean, log_var def loss_function(self, x_recon, x, mean, log_var): recon_loss = nn.functional.binary_cross_entropy(x_recon, x, size_average=False) kl_loss = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp()) return recon_loss + kl_loss def sample(self, num_samples): z = torch.randn(num_samples, 20) samples = self.decoder(z) return samples
最后,我们定义优化器,并开始训练模型。
# 定义优化器 vae = VAE() optimizer = optim.Adam(vae.parameters(), lr=1e-3) # 开始训练模型 num_epochs = 10 for epoch in range(num_epochs): for batch_idx, (data, _) in enumerate(train_loader): data = Variable(data) optimizer.zero_grad() x_recon, mean, log_var = vae(data) loss = vae.loss_function(x_recon, data, mean, log_var) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format( epoch+1, num_epochs, batch_idx+1, len(train_loader), loss.data.item()))
在训练完成后,我们可以使用VAE生成新的手写数字图像。
# 生成手写数字图像 samples = vae.sample(10) fig, ax = plt.subplots(1, 10, figsize=(10, 1)) for i in range(10): ax[i].imshow(samples[i].detach().numpy().reshape(28, 28), cmap='gray') ax[i].axis('off') plt.show()
VAE是一种强大的图像压缩和生成模型,其通过将输入图像编码为潜在变量的分布来实现图像压缩,同时从中采样生成新的图像。与传统的自编码器不同,VAE还引入了KL散度的正则化项,使得潜在变量的分布更加合理。在实现VAE时,需要定义编码器和解码器的网络结构,并计算重构误差和KL散度的正则化项。通过训练VAE模型,可以学习到输入图像的潜在变量分布,并从中生成新的图像。
以上是VAE的基本介绍和实现过程,希望能对读者有所帮助。
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 提高机器学习中数据质量的关键方法和重要性

- 下一篇
- 深入探讨对抗性机器学习和机器学习中的对抗性攻击
-
- 科技周边 · 人工智能 | 3小时前 |
- 豆包AI助你高效管理Python代码版本
- 371浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 五分钟搞定DeepSeek钉钉部署,提升办公效率
- 434浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- iPhone安装DeepSeek教程步骤详解
- 194浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- PerplexityAI搜索解析与应用指南
- 331浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 新手必看:AI短视频制作教程详解
- 388浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- CozeStudio:字节开源AI开发平台
- 209浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- AI视频生成省时省钱?真实效率测评揭秘
- 365浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 特斯拉ModelS/X欧洲停售,德国销量仅百台
- 122浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 豆包大模型如何结合AI安全工具保障数据安全?
- 266浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | 营销策略 转化率 自动化设计 DecktopusAI 拼团页面
- DecktopusAI如何提升拼团转化率?
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | AI 语音合成 素材匹配 文字转视频 摩笔天书AI视频工具
- 摩笔天书AI视频工具使用教程
- 288浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 168次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 167次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 171次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 172次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 187次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览