了解Vision Transformer(VIT):对Vision Transformer模型进行深入分析
积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《了解Vision Transformer(VIT):对Vision Transformer模型进行深入分析》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

Vision Transformer(VIT)是Google提出的一种基于Transformer的图片分类模型。不同于传统CNN模型,VIT将图像表示为序列,并通过预测图像的类标签来学习图像结构。为了实现这一点,VIT将输入图像划分为多个补丁,并将每个补丁中的像素通过通道连接,然后进行线性投影以达到所需的输入维度。最后,每个补丁被展平为单个向量,从而形成输入序列。通过Transformer的自注意力机制,VIT能够捕捉到不同补丁之间的关系,并进行有效的特征提取和分类预测。这种序列化的图像表示方法为计算机视觉任务带来了新的思路和效果。
Vision Transformer模型被广泛应用于图像识别任务,如对象检测、图像分割、图像分类和动作识别。此外,它还适用于生成建模和多模型任务,包括视觉基础、视觉问答和视觉推理等。
Vision Transformer是如何进行图片分类的?
在深入研究Vision Transformers的工作原理之前,我们必须了解原始Transformer中的注意力和多头注意力的基础知识。
Transformer是一种使用称为自注意力机制的模型,既不是CNN也不是LSTM,它构建了一个Transformer模型并显着优于这些方法。
Transformer模型的注意力机制使用了三个变量:Q(Query)、K(Key)和V(Value)。简单地说,它计算一个Query token和一个Key token的注意力权重,并乘以每个Key关联的Value。即Transformer模型计算Query token和Key token之间的关联(注意力权重),并将与每个Key关联的Value相乘。
定义Q、K、V计算为单头,在多头注意力机制中,每个头都有自己的投影矩阵W_i^Q、W_i^K、W_i^V,它们分别计算使用这些矩阵投影的特征值的注意力权重。
多头注意力机制允许每次都以不同的方式关注序列的不同部分。这意味着:
该模型可以更好地捕获位置信息,因为每个头将关注不同的输入部分。它们的组合将提供更强大的表示。
每个头还将通过唯一关联的单词来捕获不同的上下文信息。
到此我们知道了Transformer模型的工作机制,再回过头看看Vision Transformer模型。
Vision Transformer是将Transformer应用于图像分类任务的模型,于2020年10月提出。模型架构与原始Transformer几乎相同,它允许将图像视为输入,就像自然语言处理一样。
Vision Transformer模型使用Transformer Encoder作为基础模型从图像中提取特征,并将这些处理过的特征传递到多层感知器(MLP)头部模型中进行分类。由于基础模型Transformer的计算量已经非常大,因此Vision Transformer将图像分解成方形块,作为一种轻量级“窗口化”注意力机制来解决此类问题。
然后图像会被转换为方形补丁,这些补丁被展平并通过单个前馈层发送以获得线性补丁投影。为了帮助分类位,通过将可学习的类嵌入与其他补丁投影连接起来。
总之,这些补丁投影和位置嵌入形成了一个更大的矩阵,很快就会通过Transformer编码器。然后将Transformer编码器的输出发送到多层感知器以进行图像分类。输入特征很好地捕捉了图像的本质,使MLP头的分类任务简单得多。
ViT与ResNet与MobileNet的性能基准比较
虽然ViT在学习高质量图像特征方面显示出卓越的潜力,但它在性能与精度增益方面较差。准确性的小幅提高并不能证明ViT的运行时间较差。
Vision Transformer模型相关
- 微调代码和预训练的Vision Transformer模型可在Google Research的GitHub上访问。
- Vision Transformer模型在ImageNet和ImageNet-21k数据集上进行预训练。
- Vision Transformer(ViT)模型在ICLR 2021上发表的标题为“An Image is Worth 16*16 Words:Transformers for Image Recognition at Scale”的会议研究论文中被引入。
好了,本文到此结束,带大家了解了《了解Vision Transformer(VIT):对Vision Transformer模型进行深入分析》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!
使用 Vue 进行路由配置和使用的方法详解
- 上一篇
- 使用 Vue 进行路由配置和使用的方法详解
- 下一篇
- 使用Spring Boot实现的机器学习应用和实践
-
- 科技周边 · 人工智能 | 30分钟前 |
- Deepseek与Readwise提升阅读效率
- 133浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 免费 大模型 核心功能 DeepSeekOCR 在线文字识别
- DeepSeekOCR识别入口及使用方法
- 153浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 文心一言登录方法与账号安全技巧
- 117浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 图像生成 豆包AI 智能对话 免费网页版 https://www.doubao.com/chat/
- 豆包AI生图入口与免费网页版功能解析
- 183浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 印象笔记联手DeepSeek,智能文档检索升级
- 499浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | 百度AI
- 百度AI官网入口链接_智能平台直达入口
- 122浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3178次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3390次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3418次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4523次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3797次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

