分析Scrapy中链接提取器和去重工具
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个文章开发实战,手把手教大家学习《分析Scrapy中链接提取器和去重工具》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
Scrapy是一个优秀的Python爬虫框架,它支持并发、分布式、异步等高级特性,可以帮助开发者更快、更稳定地爬取互联网上的数据。在Scrapy中,链接提取器和去重工具是非常重要的组件,用来辅助爬虫完成自动化的数据抓取和处理。本文将对Scrapy中的链接提取器和去重工具进行分析,探究它们是如何实现的,以及在Scrapy爬取过程中的应用。
一、链接提取器的作用及实现
链接提取器(Link Extractor)是Scrapy爬虫框架中的一个自动提取URL链接的工具。在一个完整的爬虫过程中,往往需要从网页中提取出一些URL链接,然后根据这些链接进一步进行访问和处理。链接提取器就是用来实现这个过程的,它可以根据一些规则从网页中自动提取出链接,并将这些链接保存到Scrapy的请求队列中等待后续处理。
在Scrapy中,链接提取器是通过正则表达式或XPath表达式来进行匹配的。Scrapy提供了两个链接提取器:基于正则表达式的LinkExtractor和基于XPath表达式的LxmlLinkExtractor。
- 基于正则表达式的LinkExtractor
基于正则表达式的LinkExtractor可以通过对网页中的URL进行正则匹配,自动提取出匹配成功的链接。例如,我们希望从一个网页中提取所有以 http://example.com/ 开头的链接,可以使用以下代码:
from scrapy.linkextractors import LinkExtractor link_extractor = LinkExtractor(allow=r'^http://example.com/') links = link_extractor.extract_links(response)
allow参数指定了一个正则表达式,用来匹配所有以 http://example.com/ 开头的链接。extract_links()方法可以提取出所有匹配成功的链接,保存在一个Link对象列表中。
Link对象是Scrapy框架中用来表示链接的数据结构,其中包含了链接的URL、标题、anchor文本和链接的类型等信息。通过这些对象,我们可以很方便地获取到需要的链接,并在Scrapy爬虫中进一步处理和访问。
- 基于XPath表达式的LxmlLinkExtractor
基于XPath表达式的LxmlLinkExtractor可以通过对网页中的HTML标签进行XPath表达式匹配,自动提取出匹配成功的链接。例如,我们希望从一个网页中提取所有class属性等于 "storylink" 的a链接,可以使用以下代码:
from scrapy.linkextractors import LxmlLinkExtractor link_extractor = LxmlLinkExtractor(restrict_xpaths='//a[@class="storylink"]') links = link_extractor.extract_links(response)
restrict_xpaths参数指定了一个XPath表达式,用来匹配所有class属性等于 "storylink" 的a标签。LxmlLinkExtractor的使用方式和LinkExtractor类似,可以将提取到的链接保存在一个Link对象列表中。需要注意的是,由于LxmlLinkExtractor使用了lxml库进行HTML解析,因此需要在项目的配置文件中添加以下代码:
# settings.py DOWNLOAD_HANDLERS = { 's3': None, }
以上代码可以禁用Scrapy中默认的下载器,从而使用lxml库的HTML解析器。
二、去重工具的作用及实现
在进行Web爬取时,链接去重是非常重要的,因为在大多数情况下,同一个网页的不同链接是会重复出现的,如果不去重,就会造成重复爬取的问题,浪费带宽和时间。因此,在Scrapy中引入了去重工具(Duplicate Filter),用来对已经爬取过的链接进行标记和判断,避免重复访问。
去重工具的原理是通过将已经访问过的URL链接保存到一个数据结构中,然后对新的URL链接进行判断是否已经访问过,如果访问过,则将该URL链接丢弃,否则将其加入到爬虫的请求队列中。Scrapy中内置了很多种去重工具,包括基于内存的Set类去重器、基于磁盘的SQLite3去重器以及基于Redis的去重器等。不同的去重器有不同的适用场景,下面我们以Redis去重器为例进行说明。
- 基于Redis的去重器
Redis是一款高性能的NoSQL内存数据库,可以支持分布式、持久化、数据结构丰富等高级特性,非常适合用来实现Scrapy的去重工具。Scrapy中的Redis去重器可以通过对已经访问过的URL链接进行标记,避免重复访问。
Scrapy默认使用的是基于内存的Set类去重器,如果需要使用Redis去重器,可以在项目的配置文件中添加以下代码:
# settings.py DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" SCHEDULER = "scrapy_redis.scheduler.Scheduler" SCHEDULER_PERSIST = True REDIS_HOST = "localhost" REDIS_PORT = 6379
其中,DUPEFILTER_CLASS参数指定了去重工具使用的去重策略,此处我们使用的是scrapy_redis.dupefilter.RFPDupeFilter,该去重器是基于Redis的set数据结构实现的。
SCHEDULER参数指定了调度器使用的调度策略,此处我们使用的是scrapy_redis.scheduler.Scheduler,该调度器是基于Redis的sorted set数据结构实现的。
SCHEDULER_PERSIST参数指定了调度器是否需要在Redis中持久化,即是否需要保存上一次爬取的状态,从而避免重新爬取已经爬取过的URL。
REDIS_HOST和REDIS_PORT参数分别指定了Redis数据库的IP地址和端口号,如果Redis数据库不在本地,则需要设置相应的IP地址。
使用Redis去重器之后,需要在爬虫中添加redis_key参数,用来指定Redis中保存URL链接的key名。例如:
# spider.py class MySpider(scrapy.Spider): name = 'myspider' start_urls = ['http://example.com'] custom_settings = { 'REDIS_HOST': 'localhost', 'REDIS_PORT': 6379, 'DUPEFILTER_CLASS': 'scrapy_redis.dupefilter.RFPDupeFilter', 'SCHEDULER': 'scrapy_redis.scheduler.Scheduler', 'SCHEDULER_PERSIST': True, 'SCHEDULER_QUEUE_CLASS': 'scrapy_redis.queue.SpiderPriorityQueue', 'REDIS_URL': 'redis://user:pass@localhost:6379', 'ITEM_PIPELINES': { 'scrapy_redis.pipelines.RedisPipeline': 400, }, 'DOWNLOADER_MIDDLEWARES': { 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'scrapy_useragents.downloadermiddlewares.useragents.UserAgentsMiddleware': 500, }, 'FEED_URI': 'result.json', 'FEED_FORMAT': 'json', 'LOG_LEVEL': 'INFO', 'SPIDER_MIDDLEWARES': { 'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 300, } } def __init__(self, *args, **kwargs): domain = kwargs.pop('domain', '') self.allowed_domains = filter(None, domain.split(',')) self.redis_key = '%s:start_urls' % self.name super(MySpider, self).__init__(*args, **kwargs) def parse(self, response): pass
以上是一个简单的爬虫示例,redis_key参数指定了在Redis中保存URL链接的键名为myspider:start_urls。在parse()方法中,需要编写自己的网页解析代码,提取出需要的信息。
三、总结
链接提取器和去重工具是Scrapy爬虫框架中非常重要的组件,它们可以大大简化我们编写爬虫的工作,并提高爬虫的效率。在使用Scrapy爬虫时,我们可以根据自己的需求选择不同的链接提取器和去重工具,从而实现更为高效和灵活的爬虫功能。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

- 上一篇
- 在Linux系统中如何监测Web应用的性能

- 下一篇
- PHP库存管理模块在企业资源计划(ERP)系统中的使用案例
-
- 文章 · python教程 | 17分钟前 |
- Python函数定义与调用的终极秘诀
- 342浏览 收藏
-
- 文章 · python教程 | 21分钟前 |
- Python工厂模式使用技巧大全
- 407浏览 收藏
-
- 文章 · python教程 | 36分钟前 | java php
- Python中如何打印"HelloWorld"
- 165浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- JSON数据处理的实用技巧与方法
- 297浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- VSCodePython开发:插件推荐与调试技巧
- 241浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- TimeMachine备份与Python虚拟环境隔离实战攻略
- 257浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonORM框架使用方法与实用技巧
- 317浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 2次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 2次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 2次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 2次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 3次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览