当前位置:首页 > 文章列表 > 文章 > python教程 > 手把手教你使用pandas进行数据分析:从数据加载到特征工程实战

手把手教你使用pandas进行数据分析:从数据加载到特征工程实战

2024-01-13 10:46:23 0浏览 收藏

一分耕耘,一分收获!既然都打开这篇《手把手教你使用pandas进行数据分析:从数据加载到特征工程实战》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新文章相关的内容,希望对大家都有所帮助!

pandas数据分析方法实战:从数据加载到特征工程,需要具体代码示例

导语:
Pandas是Python中广泛使用的数据分析库,提供了丰富的数据处理和分析工具。本文将介绍从数据加载到特征工程的具体方法,并提供相关的代码示例。

一、数据加载
数据加载是数据分析的第一步。在Pandas中,可以使用多种方法来加载数据,包括读取本地文件、读取网络数据、读取数据库等。

  1. 读取本地文件
    使用Pandas的read_csv()函数可以方便地读取本地的CSV文件。以下是一个示例:
import pandas as pd

data = pd.read_csv("data.csv")
  1. 读取网络数据
    Pandas也提供了读取网络数据的功能。可以使用read_csv()函数,将网络地址作为参数传入即可,示例如下:
import pandas as pd

url = "https://www.example.com/data.csv"
data = pd.read_csv(url)
  1. 读取数据库
    如果数据存储在数据库中,可以使用Pandas提供的read_sql()函数进行读取。首先,需要使用Python的SQLAlchemy库连接到数据库,然后再使用Pandas的read_sql()函数读取数据。以下是一个示例:
import pandas as pd
from sqlalchemy import create_engine

engine = create_engine('sqlite:///database.db')
data = pd.read_sql("SELECT * FROM table", engine)

二、数据预览与处理
在加载数据后,可以使用Pandas提供的方法对数据进行预览和初步处理。

  1. 数据预览
    可以使用head()和tail()方法预览数据的前几行和后几行。例如:
data.head()  # 预览前5行
data.tail(10)  # 预览后10行
  1. 数据清洗
    清洗数据是数据分析的重要步骤之一。Pandas提供了一系列方法来处理缺失值、重复值和异常值。
  • 处理缺失值
    可以使用isnull()函数判断数据是否为缺失值,然后使用fillna()方法对缺失值进行填充。以下是一个示例:
data.isnull()  # 判断缺失值
data.fillna(0)  # 填充缺失值为0
  • 处理重复值
    使用duplicated()方法可以判断数据是否为重复值,再使用drop_duplicates()方法去除重复值。示例代码如下:
data.duplicated()  # 判断重复值
data.drop_duplicates()  # 去除重复值
  • 处理异常值
    对于异常值,可以使用条件判断和索引操作进行处理。以下是一个示例:
data[data['column'] > 100] = 100  # 将大于100的值设为100

三、特征工程
特征工程是数据分析的关键一步,通过将原始数据转化成更适合建模的特征,可以提高模型的性能。Pandas提供了多种方法来进行特征工程。

  1. 特征选择
    可以使用Pandas的列操作和条件判断来选择特定的特征。以下是一个示例:
selected_features = data[['feature1', 'feature2']]
  1. 特征编码
    在建模之前,需要将特征转化为机器学习算法可以处理的形式。Pandas提供了get_dummies()方法来进行独热编码。以下是一个示例:
encoded_data = pd.get_dummies(data)
  1. 特征缩放
    对于数值型特征,可以使用Pandas的MinMaxScaler()或StandardScaler()方法进行特征缩放。示例代码如下:
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
  1. 特征构建
    可以通过对原始特征进行基本运算和组合,构建新的特征。示例代码如下:
data['new_feature'] = data['feature1'] + data['feature2']

结语:
本文介绍了Pandas数据分析中从数据加载到特征工程的方法,并通过具体的代码示例展示了相关操作。借助Pandas强大的数据处理和分析功能,我们能够更高效地进行数据分析与挖掘。在实际应用中,可以根据具体需求选择不同的操作和方法,提升数据分析的精度和效果。

以上就是《手把手教你使用pandas进行数据分析:从数据加载到特征工程实战》的详细内容,更多关于数据分析,Pandas,特征工程的资料请关注golang学习网公众号!

掌握Web标准的基本概念与原则掌握Web标准的基本概念与原则
上一篇
掌握Web标准的基本概念与原则
推荐适合老电脑使用的win7版本是哪个?
下一篇
推荐适合老电脑使用的win7版本是哪个?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    170次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    170次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    172次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    179次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    192次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码