ProAgent:OpenAI引领下的智能代理解放人力,清华等高校发布
一分耕耘,一分收获!既然打开了这篇文章《ProAgent:OpenAI引领下的智能代理解放人力,清华等高校发布》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
- 项目地址:https://github.com/OpenBMB/ProAgent
- 论文地址:https://github.com/OpenBMB/ProAgent/blob/main/paper/paper.pdf
在人类技术发展的历史长河中,自动化一直是主要的推动力,它帮助人类从复杂、危险、繁琐的劳动环境中解脱出来。从早期农业时代的水车灌溉,到工业时代的蒸汽机,人类一直在不断追求更先进的自动化技术,以解放自己从繁重的工作中
随着信息时代的到来,软件作为信息处理、存储和通信的基础成为了人类生产生活密不可分的一环,从而催成了机器人流程自动化(Robotic Process Automation, RPA)技术。其通过人工编制规则将多个软件协调成一个固化的工作流(Workflow),通过模拟人交互的方式来和软件交互实现高效执行。
在这张图中,我们将机器人流程自动化(RPA)与智能体流程自动化(APA)进行了比较
RPA(机器人流程自动化)利用软件机器人或“BOT”来模拟和执行重复性、规则性的任务,以解放人力资源,提高工作效率。RPA的应用范围非常广泛。许多企业(包括银行、保险公司、制造业、零售业等各个行业)通常使用RPA机器人来自动执行一些常规和繁琐的任务,例如数据录入、数据提取、数据处理。通过自动化任务,RPA可以大幅度减少错误率,并能够24*7不间断地执行任务,从而提高业务的可靠性和响应能力
根据市场研究,RPA市场正在迅速增长并取得巨大成功。Gartner预测,到2023年全球RPA市场收入将达到33亿美元,增长率为17.5%。这表明企业对RPA的需求和认可程度非常高
但是,RPA 仅能替代简单、机械的人力工作,一些复杂的流程仍旧依赖人工:
- 编写 RPA 工作流本身需要繁重的人类劳动,成本较高。
- 复杂任务非常灵活,通常涉及动态决策,难以固化为规则进行表示。
图 2 RPA 与 APA 的效率与智能对比
幸运的是,最近 AI 领域兴起的大模型智能体技术(Large Language Model based Agents, LLM-based Agents)也许给自动化技术创造了新的可能性。有没有可能将 Agent 技术的灵活性引入到 RPA 领域中,来进一步减少人的参与呢?
该团队的研究探讨了大模型智能体时代下新型自动化范式 “智能体流程自动化” Agentic Process Automation (APA)。和传统 RPA 相比,在 APA 范式中,Agent 可以根据人类的需求自主完成工作流构建,同时其可以识别人类需求中需要动态决策的部分,将自动编排进工作流中,并在工作流执行到该部分时主动接管工作流的执行完成相应复杂决策。
为了探索 APA 的可能性,该研究工作实现了一个自动化智能体 ProAgent,其可以接收人类指令,以生成代码的方式构建工作流,同在工作流中引入 DataAgent 和 ControlAgent 来在工作流中实现复杂数据处理与逻辑控制。ProAgent 的研究展现了 APA 在大模型智能体时代下的可行性,也揭示了 LLM 时代下,自动化技术的崭新可能性。
方法介绍
在RPA中,工作流程是由一系列工具调用组成的图形结构:节点代表原子化的工具调用(如Gmail、Twitter、Google Sheets),而边表示执行的逻辑顺序(连接、分支、循环)。一个工作流程通常包含一个或一类任务的所有先验知识,包括问题解决路径和异常处理逻辑等。因此,编写固定的工作流程往往非常稳定、周全且高效
图 3 智能体工作流描述语言示例
在 ProAgent 中,由于 LLM 本身在代码数据中进行预训练,学习到了较强代码能力,该研究便基于代码的智能体工作流描述语言 Agentic Workflow Description Language。该语言使用 JSON 实现对工作流中数据的组织与管理,选择 Python 语法实现对工作流的逻辑控制,将控制流中的跳转、循环等直接通过 Python 语法进行表征,同时将工作流中的工具调用封装为 Python Function。于是对于 ProAgent,工作流构建任务便转化为代码生成任务。当接收到人类指令时,ProAgent 便编写相应的 Agentic Workflow Description Language,从而实现了工作流自动化构建。
图 4 结合 DataAgent 和 ControlAgent 的智能体工作流描述语言示例
复杂的现实任务中通常会涉及动态决策,单纯的 Python 式的逻辑控制规则以及 JSON 式的数据组织形式在面对灵活的需求时便无能为力,此时便需要引入 agent。因此,该研究工作进一步定义出了两种 Agent 操作:
1. DataAgent:对于一个复杂的数据处理需求,工作流构建时会使用自然语言来描述处理的任务,然后在执行时会初始化一个 DataAgent,其会基于该自然语言描述自主处理并完成该数据处理任务。
2. ControlAgent:对于难以用规则表示的逻辑控制规则,工作流构建时使用自然语言对控制逻辑进行描述,然后在运行时会初始化一个 ControlAgent,其会基于该自然语言描述自主选择工作流后续需要执行的分支。
ProAgent 使用 ReACT 模式逐步构建工作流,其共包含四个工作流构建步骤:
- Action_Define:决定在工作流中添加什么工具。
- Action Implement:将工具的输入 / 输出参数转化为 JSON 结构,同时将工具的调用封装为 Python 函数。
- Workflow Implement:定义一个 mainWorkflow 函数,用以组织整个 workflow 的逻辑控制与数据处理。
- Task Submit: 当 ProAgent 构建完 workflow 时以该操作标识构建过程结束。
示例中展示了 ProAgent 工作流构建过程的图 5
另外,为了优化 ProAgent 的效果,又引入了几个优化技巧:
- 1.Testing-on-Constructing:在构建过程中,ProAgent 会在一次修改工作流之后对工作流进行测试,以保证工作流的正确性。
- Function Calling:工作流构建的所有操作均封装为了 GPT-4 的 Function,从而提高对工作流构建过程的控制。
- Chain-of-Thought:ProAgent 在编写工作流代码时,需要对于每个 function 都要给出注释 comment 和一个编写 plan,从而提高 ProAgent 工作流构建的性能。
工作流的执行过程是基于 Python 解释器的。当给定一个工作流时,对应的 mainWorkflow 函数被用作执行的入口,从而开始整个执行过程。执行过程遵循 Python 代码的执行规则,即按照顺序逐行执行。一旦 mainWorkflow 函数返回,工作流的执行就成功完成了
可行性验证
为了验证 Agentic Process Automation 的可行性,该研究使用 OpenAI GPT-4 作为基础模型,并以一个开源的 RPA 平台 n8n 作为载体,实现了上述的 ProAgent。同时设计了一个需要兼顾灵活与效率的任务:这是一个典型的商业场景,需要从 Google Sheets 中提取各种业务线的营利数据,同时根据业务是否属于 2B 或是 2C,决定后续的行为。一旦确定业务线为 2C,就会向 Slack 频道发送一条消息。而对于 2B 的业务线,则会向相应的经理发送一封电子邮件,其中包括对业务线的评估和简要的盈利概况。
图 6 任务 Instruction 展示
需要重写的内容是:对于这个任务而言,首先它是一个重复性的任务,对于多条产品线,应该采取相同的处理流程。其次,要区分一个业务线是2C还是2B是很困难的,需要涉及到Agent的动态决策来确定后续的工作流程。最后,根据编写业务线的评估邮件需要一定的智能,因此需要Agent的介入
在 ProAgent 生成中,对于该任务,编写出了一个包含四个原子操作,一个 DataAgent 和一个 ControlAgent 的工作流。总体过程大致如下图所示:
图 7 ProAgent 工作流构建过程展示
可以看到,ProAgent 通过自主编写代码的方式,自动完成了工作流的构建过程,其中无需涉及人工介入。在需要判断业务线是 2B 还是 2C 时,ProAgent 引入了 ControlAgent 来做判断,ControlAgent 的 Prompt 被设置为 “Decide Whether the business line is toC or toB”。当业务线为 2B 时,ProAgent 还引入了一个 DataAgent,其任务设置为 “Write a email of the business line of profit, together with your suggestion”,从而利用 agent 的智能来根据不同业务线的实际情况来撰写邮件。
在工作流被编写、固化下来以后,工作流就会根据不同的数据自动分支到不同的逻辑进行高效地数据处理了。
图 8 ProAgent 工作流执行过程展示
当处理2C业务线数据时,ControlAgent可以根据业务线描述来判断当前业务线的类型,并选择使用Slack工具进行沟通。而在处理2B业务线数据时,DataAgent可以撰写邮件并发送到相应经理的邮箱中
总结
这项研究提出了一种新的自动化范式——Agentic Process Automation,适用于大模型时代。与传统的Robotic Process Automation技术相比,Agentic Process Automation能够自动化工作流的构建,并实现工作流执行时动态决策的自动化。该研究还进一步开发了ProAgent,并通过实验证明了大模型智能体在自动化中的可行性和潜力。相信未来,大模型智能体技术将帮助人类实现更高层次的自动化,从繁重的劳动中解放出来
团队相关研究
目前研究团队已在大模型智能体方向有诸多研究,包括:
- XAgent:超强大模型智能体应用框架,可自行拆解复杂任务,并高效执行。
- 项目地址:https://github.com/OpenBMB/XAgent
- ChatDev:多智能体协作开发框架,让多个不同角色的智能体进行协作,自动化开发软件应用。
- 项目地址:https://github.com/OpenBMB/ChatDev
- AgentVerse:大模型驱动的智能体通用平台,招募各种各样的 agent 专家,共同帮助用户解决复杂任务。
- 项目地址:https://github.com/OpenBMB/AgentVerse
理论要掌握,实操不能落!以上关于《ProAgent:OpenAI引领下的智能代理解放人力,清华等高校发布》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 大模型幻觉率排行:GPT-4 3%最低,谷歌Palm竟然高达27.2%

- 下一篇
- 基于LLaMA却改张量名,李开复公司大模型引争议,官方回应来了
-
- 科技周边 · 人工智能 | 1小时前 |
- 小米YU7试生产曝光用于展车及测试
- 438浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 路虎揽胜星脉电动版2026年亮相800V平台三排座
- 139浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 即梦ai时间戳添加教程与日期水印设置攻略
- 172浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 | 即梦AI客服 问题反馈
- 即梦ai客服支持与问题反馈渠道大揭秘
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 操作系统升级补丁:设备盔甲还是致命陷阱?
- 367浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 40次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 34次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 35次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 37次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 50次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览