大模型幻觉率排行:GPT-4 3%最低,谷歌Palm竟然高达27.2%
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《大模型幻觉率排行:GPT-4 3%最低,谷歌Palm竟然高达27.2%》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。
人工智能发展进步神速,但问题频出。OpenAI 新出的 GPT 视觉 API 前脚让人感叹效果极好,后脚又因幻觉问题令人不禁吐槽。
幻觉一直是大模型的致命缺陷。由于数据集庞杂,其中难免会有过时、错误的信息,导致输出质量面临着严峻的考验。过多重复的信息还会使大模型形成偏见,这也是幻觉的一种。但是幻觉并非无解命题。开发过程中对数据集慎重使用、严格过滤,构建高质量数据集,以及优化模型结构、训练方式都能在一定程度上缓解幻觉问题。
有那么多流行的大型模型,它们对缓解幻觉的效果如何呢?这里有一个明确对比它们差距的排行榜
Vectara 平台发布了这个排行榜,该平台专注于人工智能。排行榜的更新日期是2023年11月1日,Vectara 表示他们将会继续跟进幻觉评估,以便随着模型的更新而更新排行榜
项目地址:https://github.com/vectara/hallucination-leaderboard
为了确定这个排行榜,Vectara进行了事实一致性研究,并训练了一个模型来检测LLM输出中的幻觉。他们使用了一个媲美SOTA模型,并通过公共API向每个LLM提供了1000篇简短文档,并要求它们仅使用文档中呈现的事实对每篇文档进行总结。在这1000篇文档中,只有831篇文档被每个模型总结,其余文档由于内容限制被至少一个模型拒绝回答。利用这831份文件,Vectara计算了每个模型的总体准确率和幻觉率。每个模型拒绝响应prompt的比率详见「Answer Rate」一栏。发送给模型的内容都不包含非法或不安全内容,但其中的触发词足以触发某些内容过滤器。这些文件主要来自CNN/每日邮报语料库
需要注意的是,Vectara 评估的是摘要准确性,而不是整体事实准确性。这样可以比较模型对所提供信息的响应。换句话说,评估的是输出摘要是否与源文件「事实一致」。由于不知道每个 LLM 是在什么数据上训练的,因此对于任何特别问题来说,确定幻觉都是不可能的。此外,要建立一个能够在没有参考源的情况下确定回答是否是幻觉的模型,就需要解决幻觉问题,而且需要训练一个与被评估的 LLM 一样大或更大的模型。因此,Vectara 选择在总结任务中查看幻觉率,因为这样的类比可以很好地确定模型整体真实性。
幻觉模型的检测地址是:https://huggingface.co/vectara/hallucination_evaluation_model
此外,越来越多的LLM被用于RAG(Retrieval Augmented Generation,检索增强生成)管道以回答用户的查询,如Bing Chat和谷歌聊天集成。在RAG系统中,模型被部署为搜索结果的汇总器,因此该排行榜也是衡量模型在RAG系统中使用时准确性的良好指标
鉴于GPT-4一直以来的出色表现,它的幻觉率最低似乎不足为奇。然而,一些网友表示,他们对于GPT-3.5和GPT-4之间并没有太大的差距感到惊讶
在追赶GPT-4和GPT-3.5之后,LLaMA 2表现出色。然而,谷歌的大型模型表现让人不满意。一些网友表示,谷歌的BARD常常用“我还在训练中”来回避其错误答案
有了这样的排行榜,能够让我们对于不同模型之间的优劣有更加直观的判断。前几天,OpenAI 推出了 GPT-4 Turbo,这不,立刻有网友提议将其也更新在排行榜中。
下次的排行榜会是怎样的,有没有大幅变动,我们拭目以待。
到这里,我们也就讲完了《大模型幻觉率排行:GPT-4 3%最低,谷歌Palm竟然高达27.2%》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于AI,模型的知识点!

- 上一篇
- 铠侠 Q2 亏损达 1008 亿日元,声称 NAND 闪存销售价格已达最低点

- 下一篇
- ProAgent:OpenAI引领下的智能代理解放人力,清华等高校发布
-
- 科技周边 · 人工智能 | 1小时前 | 即梦AI客服 问题反馈
- 即梦ai客服支持与问题反馈渠道大揭秘
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 操作系统升级补丁:设备盔甲还是致命陷阱?
- 367浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 36次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 32次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 32次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 33次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 48次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览