当前位置:首页 > 文章列表 > 文章 > python教程 > 如何实现Python底层技术的数据可视化

如何实现Python底层技术的数据可视化

2023-11-08 13:55:16 0浏览 收藏

哈喽!今天心血来潮给大家带来了《如何实现Python底层技术的数据可视化》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!

在当今人工智能和大数据时代,数据可视化成为了数据分析应用中的一个非常重要的环节。数据可视化能够帮助我们更加直观地理解数据,发现数据中的规律和异常,同时也能够帮助我们更加清晰地向他人传递自己的数据分析。

Python 是当前被广泛使用的编程语言之一,其在数据分析和数据挖掘领域表现非常出色。Python 提供了丰富的数据可视化库,例如Matplotlib、Seaborn、Bokeh等。其中,Matplotlib是Python中最著名的数据可视化库之一,其提供了极其丰富的可视化功能,但是在Matplotlib底层的数据可视化核心技术上,官方文档并不是非常详细,很多开发者可能并不了解Matplotlib的底层技术是如何实现的。因此,本文将重点介绍如何使用Python底层技术实现数据可视化,并提供具体的代码示例。

Matplotlib 底层技术的实现

Matplotlib 是Python中广泛使用的数据可视化库,底层是基于pyplot。

我们通常先导入可视化库,然后通过plot() 函数创建图形实例,再通过一系列函数来创建和展示图形。

下面给出一个简单的例子,展示如何在 Python 中使用 Matplotlib 库绘制一条以 x 轴为横轴,y 轴为纵轴的坐标曲线图。

import matplotlib.pyplot as plt
import numpy as np

# 生成X轴的范围是(-π,π)内的等差数列
x = np.linspace(-np.pi,np.pi,256,endpoint=True)

# 计算cos(x)和sin(x)的值
C,S = np.cos(x), np.sin(x)

#创建画布和子图
fig,ax = plt.subplots()

# 画出cos(x)和sin(x)的曲线图
ax.plot(x,C,label='cos(x)')
ax.plot(x,S,label='sin(x)')

# 设置标题,x轴,y轴的名称
ax.set_title('Cos and Sin Function')
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')

# 设置图例
ax.legend()

# 显示图形
plt.show()

通过上面的代码,可以很容易地绘制出一条以 x 轴为横轴,y 轴为纵轴的坐标曲线图。

Matplotlib 底层技术的实现过程

在上面的代码中,我们首先生成了x轴的取值范围,然后计算出了cos(x)和sin(x)的值。接着,我们创建了一个画布和一个子图,然后使用plot()函数进行绘图操作。最后,我们通过一些函数设置图形的标题、x/y轴名称和图例,然后调用show()函数来显示出画布实例。

这其中,matplotlib.pyplot 子库是 Matplotlib 库下的绘图模块,它提供了在 NumPy 数组上作图的各种功能。对于 Matplotlib 底层技术的实现,可以通过两个方面来理解,即 FigureCanvas 和 Renderer,这两者分别是 Matplotlib 中的画布和渲染器对象。

FigureCanvas 是 Matplotlib 中的一个面向对象的图形显示类,它负责和绘图设备进行交互,将绘图结果输出到显示屏上。在上述例子中,我们通过plt.subplots()创建了一个Figure,即画布对象。而后续的绘图操作都是在这个画布上进行的。

Renderer 是 Matplotlib 中的一个渲染器对象,它负责将绘图的线条、点、文字等绘制成图像,即在画布上进行渲染。在上述例子中,我们使用了ax.plot()函数来绘制cos(x)和sin(x)的曲线,而这个函数实际上是使用了一个渲染器对象来绘制图形。在这个过程中,首先调用Axis X/Y Limiter来确定每个坐标轴上的数据范围,再通过Scaler来将原始数据转换为画布上的坐标,最后通过Renderer来实现真正的绘图操作。

Seaborn 底层技术的实现

Seaborn 是一个基于 Matplotlib 的更高级别的绘图库,它提供了更加简单易用的API,同时也保留了Matplotlib中底层的绘图技术,可以说 Seaborn是Matplotlib的补充和增强。

我们以绘制单变量的直方图为例,来展示使用Seaborn库的具体代码示例。这个例子将会使用Seaborn库内置的数据集"mpg"。

import seaborn as sns

# 设置Seaborn图库的风格和背景颜色
sns.set(style='whitegrid', palette='pastel')

# 读取数据
mpg = sns.load_dataset("mpg")

# 绘制直方图,并设置额外参数
sns.distplot(mpg['mpg'], bins=20, kde=True, rug=True)

# 设置图形标题以及X轴,Y轴的标签
plt.title('Histogram of mpg ($mu=23.45, ; sigma=7.81$)')
plt.xlabel('MPG')
plt.ylabel('Frequency')

# 显示图形
plt.show()

通过上述代码,可以绘制出一个展示mpg数据分布情况的直方图。

Seaborn 底层技术的实现过程

在上面的代码中,我们首先设置了 Seaborn 图库的风格和背景颜色,接着读取了Seaborn中自带的 mpg 数据集。然后,我们使用sns.distplot()函数绘制了一个直方图,同时设置了一些额外的参数来调整图形效果。最后,我们使用plt.title()、plt.xlabel()和plt.ylabel()函数来设置图形的标题、x/y轴名称等信息,然后调用plt.show()函数来展示出图形。

Seaborn 底层技术的实现过程类似于Matplotlib,也是通过 FigureCanvas 和 Renderer 来实现绘图的。在Seaborn底层技术中,FigureCanvas对象是通过 FacetGrid 来创建的,而绘图就是基于这个画布对象来进行的。同时,Seaborn库中的绘图主要是通过AxesSubplot类来实现。这个类是Matplotlib中的Axes类的子类,但是它在设计上更加高效和易用,因此被Seaborn作为底层绘图技术的主要实现方式。

Bokeh 底层技术的实现

Bokeh 是一个用于数据可视化和探索性分析的 Python 库,其具有交互性、响应式和高效创建动态数据可视化的特点。Bokeh 底层技术中的绘制技术主要是基于JavaScript来实现的,因此能够实现更加交互式和动态的可视化效果。

下面展示一个简单的 Bokeh 代码示例,说明如何在 Python 中使用 Bokeh 库绘制一个5条折线图,其中使用 Bokeh 提供的工具箱来进行交互式操作。

from bokeh.plotting import figure, show
from bokeh.io import output_notebook

# 启用Jupyter Notebook绘图
output_notebook()

# 创建一个 Bokeh 图形对象
p = figure(title="Simple Line Graph")

# 创建折线图
x = [1, 2, 3, 4, 5]
y = [6, 7, 2, 4, 5]
p.line(x, y, legend="Line A", line_width=2)

y2 = [2, 3, 4, 5, 6]
p.line(x, y2, legend="Line B", line_width=2)

y3 = [4, 5, 1, 7, 8]
p.line(x, y3, legend="Line C", line_width=2)

y4 = [6, 2, 4, 8, 1]
p.line(x, y4, legend="Line D", line_width=2)

y5 = [5, 8, 6, 2, 4]
p.line(x, y5, legend="Line E", line_width=2)

# 添加工具箱
p.toolbar_location = "above"
p.toolbar.logo = "grey"

# 设置图形的X轴,Y轴以及图例
p.xaxis.axis_label = "X"
p.yaxis.axis_label = "Y"
p.legend.location = "bottom_right"

# 显示图形
show(p)

通过上述代码,可以绘制出一个包含5条折线的折线图,并且提供了一些 Bokeh 工具箱来提供交互式操作。

Bokeh 底层技术的实现过程

Bokeh 底层技术的实现过程中,最核心的部分就是基于 JavaScript 来实现绘图。在上述代码中,我们主要使用了 Bokeh 的 figure()函数来创建一个 Bokeh 图形对象。同时,我们也使用了 Bokeh 提供的 line()函数来创建折线图,并且添加了一些工具箱和额外的功能,如工具箱的位置、X轴/Y轴的名称和图例的位置等等。

在Bokeh 底层技术的实现过程中,将Python代码转换为JavaScript代码非常重要。Bokeh 将Python代码转换为 JavaScript 代码,然后使用 Web 技术在前端绘图。Bokeh 库中的 BokehJS 是使用 TypeScript 编写的 JavaScript 库,它实现了所有 Bokeh 的绘图功能。因此,在使用Bokeh库绘制数据可视化时,我们也需要对比对JavaScript进行一些调试和定制。

小结

数据可视化是一个重要的环节,而Python通过各种底层技术提供了多种数据可视化库,其中最为流行的有Matplotlib、Seaborn和Bokeh等。这些库都支持Python本身的各种数据类型,并且能够提供非常高效,简洁和灵活的绘制方法。

本文主要介绍了使用Python底层技术实现数据可视化的方法,并提供了各库中的具体代码示例。通过学习这些底层技术,可以更加深入地了解Python数据可视化库背后的原理和细节。

好了,本文到此结束,带大家了解了《如何实现Python底层技术的数据可视化》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

如何实现Java底层技术之网络通信与协议栈如何实现Java底层技术之网络通信与协议栈
上一篇
如何实现Java底层技术之网络通信与协议栈
如何实现MySQL底层优化:查询缓存的使用和性能分析
下一篇
如何实现MySQL底层优化:查询缓存的使用和性能分析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    23次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    35次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    46次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码