Python卫星数据处理教程:rasterio库使用详解
从现在开始,我们要努力学习啦!今天我给大家带来《Python处理卫星数据教程:rasterio库详解》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
使用Python的rasterio库处理卫星数据的关键方法包括:1. 安装与基础读取,通过pip或conda安装后,使用open函数读取GeoTIFF文件并获取元数据和波段信息;2. 显示与分析图像数据,结合matplotlib进行单波段和RGB多波段图像可视化,并进行归一化和对比度拉伸处理;3. 裁剪与重投影,利用Window对象裁剪感兴趣区域,通过calculate_default_transform和reproject实现坐标系转换;4. 保存处理结果,更新profile参数后将裁剪或重投影后的数据写入新的GeoTIFF文件,确保地理信息准确。
处理卫星数据在遥感、地理信息系统(GIS)等领域非常常见。如果你用Python,rasterio是一个强大又常用的库,专门用来读写栅格地理空间数据。它能轻松处理像GeoTIFF这样的格式,非常适合处理卫星图像。

下面是一些使用rasterio处理卫星数据的关键方法和技巧,适合入门者和需要实际操作的人。
1. 安装与基础读取
首先,你需要安装rasterio。最简单的方式是通过pip或conda:

pip install rasterio
安装完成后,就可以开始读取GeoTIFF文件了。假设你有一个名为satellite_image.tif
的文件:
import rasterio with rasterio.open('satellite_image.tif') as src: print(src.profile) # 查看元数据信息 band1 = src.read(1) # 读取第一个波段
这里有几个关键点:

src.profile
包含了数据类型、坐标参考系统(CRS)、变换矩阵等重要信息。- 多数卫星图像会有多个波段,比如红、绿、蓝、近红外等,可以通过
read(n)
来获取第n个波段。
2. 显示与分析图像数据
读取完数据后,你可能想看看图像内容或者做一些基本分析。可以用matplotlib来可视化:
import matplotlib.pyplot as plt plt.imshow(band1, cmap='gray') plt.colorbar() plt.show()
如果是多波段图像(比如RGB),可以这样合成显示:
rgb = src.read([3, 2, 1]) # 假设3=红,2=绿,1=蓝 rgb = rgb.transpose((1, 2, 0)) # 调整维度顺序为(height, width, bands) plt.imshow(rgb / rgb.max()) # 归一化显示 plt.show()
注意:
- 不同传感器的数据范围不同,有的可能是16位深度,记得做归一化处理。
- 可视化前通常需要拉伸对比度,避免图像发暗或过曝。
3. 裁剪与重投影
很多时候你只需要感兴趣区域,或者需要将数据转换到统一的坐标系中。rasterio支持裁剪和重投影操作。
裁剪图像
你可以根据一个地理边界(bbox)来裁剪图像:
from rasterio.windows import Window # 假设你知道左上角像素位置(x, y)和宽高(width, height) window = Window(col_off=100, row_off=200, width=500, height=500) with rasterio.open('satellite_image.tif') as src: cropped = src.read(window=window)
重投影
要将图像从一种坐标系转换为另一种(如WGS84转Web Mercator):
from rasterio.warp import calculate_default_transform, reproject, Resampling dst_crs = 'EPSG:3857' # Web Mercator with rasterio.open('satellite_image.tif') as src: transform, width, height = calculate_default_transform( src.crs, dst_crs, src.width, src.height, *src.bounds ) kwargs = src.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height }) with rasterio.open('reprojected_image.tif', 'w', **kwargs) as dst: for i in range(1, src.count + 1): reproject( source=rasterio.band(src, i), destination=rasterio.band(dst, i), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.bilinear )
这个过程比较复杂,但非常实用。特别是当你需要将多个不同来源的图像对齐时。
4. 保存处理后的结果
处理完数据之后,通常需要保存为新的GeoTIFF文件。例如保存裁剪后的图像:
profile = src.profile profile.update(width=cropped.shape[2], height=cropped.shape[1], transform=window.transform) with rasterio.open('cropped_image.tif', 'w', **profile) as dst: dst.write(cropped)
记住更新profile中的关键参数,否则新文件的地理信息会不准确。
基本上就这些。用rasterio处理卫星数据虽然不像QGIS那样直观,但灵活性更强,特别适合批量处理和自动化流程。掌握好这几个步骤,就能完成大部分常见的预处理任务了。
好了,本文到此结束,带大家了解了《Python卫星数据处理教程:rasterio库使用详解》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

- 上一篇
- PHP多词参数传递与MySQL存储方法

- 下一篇
- 蝉镜计时器教程:如何设置倒计时
-
- 文章 · python教程 | 8分钟前 |
- Python压缩zip文件教程详解
- 298浏览 收藏
-
- 文章 · python教程 | 16分钟前 |
- Python获取文件时间戳:os.stat()详解
- 271浏览 收藏
-
- 文章 · python教程 | 19分钟前 |
- Python循环修改列表常见问题及解决方法
- 117浏览 收藏
-
- 文章 · python教程 | 44分钟前 |
- Python中break的作用及用法详解
- 475浏览 收藏
-
- 文章 · python教程 | 53分钟前 |
- Scrapy中间件开发:Python插件编写教程
- 489浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python地理数据处理:Geopandas入门教程
- 126浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python词云生成教程:实战指南
- 501浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python Python编程
- Python实现Z-score标准化教程
- 438浏览 收藏
-
- 文章 · python教程 | 1小时前 | io.StringIO 输出重定向 sys.stdout contextlib sys.stderr
- Python屏蔽输出怎么恢复内容
- 408浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 179次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 177次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 180次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 188次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 201次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览