当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

来源:51CTO.COM 2023-09-25 21:04:55 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

在过去几年中,Text-to-Image 领域取得了巨大的进展,特别是在人工智能生成内容(AIGC)的时代。随着DALL-E模型的兴起,学术界涌现出越来越多的Text-to-Image模型,比如Imagen、Stable Diffusion、ControlNet等模型。然而,尽管Text-to-Image领域发展迅速,现有模型在稳定地生成包含文本的图像方面仍然面临一些挑战

尝试过现有 sota 文生图模型可以发现,模型生成的文字部分基本上是不可读的,类似于乱码,这非常影响图像的整体美观度。

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

现有的sota文本生成模型生成的文本信息可读性较差

经过调研,学术界在这方面的研究较少。事实上,包含文本的图像在日常生活中十分常见,例如海报、书籍封面和路牌等。如果 AI 能够有效地生成这类图像,将有助于辅助设计师的工作,激发设计灵感,减轻设计负担。除此之外,用户可能只希望修改文生图模型结果的文字部分,保留其他非文本区域的结果。

为了不改变原始意思,需要将内容改写成中文。不需要出现原句

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

  • 论文地址:https://arxiv.org/abs/2305.10855
  • 项目地址:https://jingyechen.github.io/textdiffuser/
  • 代码地址:https://github.com/microsoft/unilm/tree/master/textdiffuser
  • Demo地址:https://huggingface.co/spaces/microsoft/TextDiffuser

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

TextDiffuser 的三个功能

本文提出了 TextDiffuser 模型,该模型包含两个阶段,第一阶段生成 Layout,第二阶段生成图像。

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

需要重新编写的是:TextDiffuser框架图

模型接受一段文本 Prompt,然后根据 Prompt 中的关键词确定每个关键词的 Layout(也就是坐标框)。研究者采用了 Layout Transformer,使用编码器-解码器的形式自回归地输出关键词的坐标框,并用 Python 的 PILLOW 库渲染出文本。在这个过程中,还可以利用 Pillow 现成的 API 得到每个字符的坐标框,相当于得到了字符级别的 Box-level segmentation mask。基于此信息,研究者尝试微调 Stable Diffusion。

他们考虑了两种情况,一种是用户想直接生成整张图片(称为 Whole-Image Generation)。另一种情况是 Part-Image Generation,在论文中也称之为 Text-inpainting,指的是用户给定一张图像,需要修改图里的某些文本区域。

为了实现上述两个目标,研究人员重新设计了输入特征,将维度从原来的4维增加到了17维。其中包括4维加噪图像特征、8维字符信息、1维图像掩码以及4维未被掩码的图像特征。如果是整体图像生成,研究人员将掩码区域设为整个图像;反之,如果是部分图像生成,只需对图像的一部分进行掩码。扩散模型的训练过程类似于LDM,对此感兴趣的同伴可以参考原文中的方法部分描述

在推理阶段,TextDiffuser具有非常灵活的使用方式,可以分为三种:

  • 根据用户给定的指令生成图像。并且,如果用户不大满意第一步 Layout Generation 生成的布局,用户可以更改坐标也可以更改文本的内容,这增加了模型的可控性。
  • 直接从第二个阶段开始。根据模板图像生成最终结果,其中模板图像可以是印刷文本图像,手写文本图像,场景文本图像。研究者专门训练了一个字符集分割网络用于从模板图像中提取 Layout。
  • 同样也是从第二个阶段开始,用户给定图像并指定需要修改的区域与文本内容。并且,这个操作可以多次进行,直到用户对生成的结果感到满意为止。

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

构造的 MARIO 数据

为了训练TextDiffuser,研究人员收集了一千万张文本图像,如上图所示,包括三个子集:MARIO-LAION,MARIO-TMDB和MARIO-OpenLibrary

研究者在筛选数据时考虑了若干方面:例如在图像经过 OCR 后,只保留文本数量为 [1,8] 的图像。他们筛掉了文本数量超过 8 的文本,因为这些文本往往包含大量密集文本,OCR 的结果一般不太准确,例如报纸或者复杂的设计图纸。除此之外,他们设置文本的区域大于 10%,设置这个规则是为了让文本区域在图像的比重不要太小。

在对 MARIO-10M 数据集进行训练后,研究人员对 TextDiffuser 进行了定量和定性的比较,与现有方法进行了对比。例如,在整体图像生成任务中,本文方法生成的图像具有更清晰可读的文本,并且文本区域与背景区域的融合更好,如下图所示

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

与现有工作比较文本渲染性能

研究人员还进行了一系列定性实验,结果如表1所示。评估指标包括FID、CLIPScore和OCR。特别是OCR指标,本研究方法相对于对比方法有显著的提升

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

重写后的内容:实验结果见表1:定性实验

对于 Part-Image Generation 任务,研究者尝试着在给定的图像上增加或修改字符,实验结果表明 TextDiffuser 生成的结果很自然。

新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染

文本修复功能可视化

总的来说,本文提出的 TextDiffuser 模型在文本渲染领域取得了显著的进展,能够生成包含易读文本的高质量图像。未来,研究者将进一步提升 TextDiffuser 的效果。

以上就是《新标题:TextDiffuser:无惧图像中的文字,提供更高质量的文本渲染》的详细内容,更多关于AI,模型的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
羽蔻生物AIFOAM体膜浴机荣获“年度产品创新力”大奖羽蔻生物AIFOAM体膜浴机荣获“年度产品创新力”大奖
上一篇
羽蔻生物AIFOAM体膜浴机荣获“年度产品创新力”大奖
黄山山区面临挑山工紧缺问题,采用大疆无人机运输方案解决:每天最高运输量超过2000斤
下一篇
黄山山区面临挑山工紧缺问题,采用大疆无人机运输方案解决:每天最高运输量超过2000斤
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    14次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    27次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    26次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码