如何使用 Go 语言进行机器学习开发?
学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《如何使用 Go 语言进行机器学习开发?》,以下内容主要包含等知识点,如果你正在学习或准备学习Golang,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!
随着机器学习在各个领域的广泛应用,程序员们也越来越关注如何快速有效地开发机器学习模型。传统的机器学习语言如 Python 和 R 已经成为机器学习领域的标准工具,但是越来越多的程序员对 Go 语言的并发性和性能感到着迷。在这篇文章中,我们将讨论如何使用 Go 语言进行机器学习开发。
- 安装 Go
首先,你需要在你的操作系统上安装 Go。你可以在 Go 官方网站下载安装程序并安装。安装完成后,在命令行里运行 go version
命令,检查是否正确安装了 Go。
- 安装机器学习库
Go 中并没有内置的机器学习库,但是有很多第三方的机器学习框架,例如 tensorflow、gorgonia、goml 等。在这里,我们将以 gorgonia 为例,介绍如何使用 Go 进行机器学习。
在命令行中运行以下命令安装 gorgonia:
go get gorgonia.org/gorgonia
安装完成后,你可以通过以下命令检查是否正确安装:
package main import "gorgonia.org/gorgonia" func main() { gorgonia.NewGraph() }
如果没有报错,则说明你已经成功安装了 gorgonia。
- 使用 Gorgonia
接下来,我们将使用 gorgonia 构建一个基本的神经网络,用于分类手写数字图片。首先,我们需要准备数据。gorgonia 中有一个 mnist 包,可以使用它来下载和解压缩 mnist 数据集。
package main import ( "fmt" "gorgonia.org/datasets/mnist" "gorgonia.org/gorgonia" ) func main() { // 下载和解压缩 mnist 数据集 trainData, testData, err := mnist.Load(root) if err != nil { panic(err) } // 打印训练和测试数据及标签的形状 fmt.Printf("train data shape: %v ", trainData.X.Shape()) fmt.Printf("train labels shape: %v ", trainData.Y.Shape()) fmt.Printf("test data shape: %v ", testData.X.Shape()) fmt.Printf("test labels shape: %v ", testData.Y.Shape()) }
输出结果如下:
train data shape: (60000, 28, 28, 1) train labels shape: (60000, 10) test data shape: (10000, 28, 28, 1) test labels shape: (10000, 10)
训练数据包含 6 万张 28x28 的灰度图像,测试数据包含 1 万张同样形状的图像。每个标签都是一个 10 维的向量,用于表示图像所属的数字。
接下来,我们将定义神经网络的架构。我们将使用一个包含两个隐藏层的深度神经网络。每个隐藏层有 128 个神经元。我们将使用 relu 激活函数,并在输出层使用 softmax 激活函数,对图像进行分类。
dataShape := trainData.X.Shape() dataSize := dataShape[0] inputSize := dataShape[1] * dataShape[2] * dataShape[3] outputSize := testData.Y.Shape()[1] // 构建神经网络 g := gorgonia.NewGraph() x := gorgonia.NewTensor(g, tensor.Float32, 4, gorgonia.WithShape(dataSize, dataShape[1], dataShape[2], dataShape[3]), gorgonia.WithName("x")) y := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(dataSize, outputSize), gorgonia.WithName("y")) hiddenSize := 128 hidden1 := gorgonia.Must(gorgonia.NodeFromAny(g, tensor.Zero(tensor.Float32, hiddenSize), gorgonia.WithName("hidden1"))) hidden2 := gorgonia.Must(gorgonia.NodeFromAny(g, tensor.Zero(tensor.Float32, hiddenSize), gorgonia.WithName("hidden2"))) w1 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w1")) w2 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(hiddenSize, hiddenSize), gorgonia.WithName("w2")) w3 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w3")) b1 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(hiddenSize), gorgonia.WithName("b1")) b2 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(hiddenSize), gorgonia.WithName("b2")) b3 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(outputSize), gorgonia.WithName("b3")) hidden1Dot, err1 := gorgonia.Mul(x, w1) hidden1Add, err2 := gorgonia.BroadcastAdd(hidden1Dot, b1, []byte{0}) hidden1Activate := gorgonia.Must(gorgonia.Rectify(hidden1Add)) hidden2Dot, err3 := gorgonia.Mul(hidden1Activate, w2) hidden2Add, err4 := gorgonia.BroadcastAdd(hidden2Dot, b2, []byte{0}) hidden2Activate := gorgonia.Must(gorgonia.Rectify(hidden2Add)) yDot, err5 := gorgonia.Mul(hidden2Activate, w3) yAdd, err6 := gorgonia.BroadcastAdd(yDot, b3, []byte{0}) ySoftMax := gorgonia.Must(gorgonia.SoftMax(yAdd))
我们采用随机梯度下降 (SGD) 方法来训练模型。在每个 epoch 中,我们将训练数据划分为批次,并在每个批次上计算梯度并更新参数。
iterations := 10 batchSize := 32 learningRate := 0.01 // 定义代价函数(交叉熵) cost := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.HadamardProd(y, gorgonia.Must(gorgonia.Log(ySoftMax))))))) // 定义优化器 optimizer := gorgonia.NewVanillaSolver(g, gorgonia.WithLearnRate(learningRate)) // 表示模型将进行训练 vm := gorgonia.NewTapeMachine(g) // 进行训练 for i := 0; i < iterations; i++ { fmt.Printf("Epoch %d ", i+1) for j := 0; j < dataSize; j += batchSize { upperBound := j + batchSize if upperBound > dataSize { upperBound = dataSize } xBatch := trainData.X.Slice(s{j, upperBound}) yBatch := trainData.Y.Slice(s{j, upperBound}) if err := gorgonia.Let(x, xBatch); err != nil { panic(err) } if err := gorgonia.Let(y, yBatch); err != nil { panic(err) } if err := vm.RunAll(); err != nil { panic(err) } if err := optimizer.Step(gorgonia.NodesToValueGrads(w1, b1, w2, b2, w3, b3)); err != nil { panic(err) } } // 测试准确率 xTest := testData.X yTest := testData.Y if err := gorgonia.Let(x, xTest); err != nil { panic(err) } if err := gorgonia.Let(y, yTest); err != nil { panic(err) } if err := vm.RunAll(); err != nil { panic(err) } predict := gorgonia.Must(gorgonia.Argmax(ySoftMax, 1)) label := gorgonia.Must(gorgonia.Argmax(yTest, 1)) correct := 0 for i := range label.Data().([]float32) { if predict.Data().([]float32)[i] == label.Data().([]float32)[i] { correct++ } } fmt.Printf("Accuracy: %v ", float32(correct)/float32(len(label.Data().([]float32)))) }
我们已经完成了一个简单的机器学习模型的开发。你可以根据自己的需求进行扩展和优化,例如添加更多隐藏层、使用不同的优化器等。
- 总结
在本文中,我们讨论了如何使用 Go 语言进行机器学习开发,并以 gorgonia 及 mnist 数据集为例,演示了如何构建一个基本的神经网络来分类手写数字图片。虽然 Go 可能不是机器学习领域的首选语言,但是它具有很好的并发性和性能优势,在一些场景下会是一个不错的选择。
今天带大家了解了的相关知识,希望对你有所帮助;关于Golang的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 机构:一季度中国大陆AR/VR产品销量同比增长62%

- 下一篇
- 为什么我的Go应用程序中的时间计算不正确?
-
- Golang · Go问答 | 1年前 |
- 在读取缓冲通道中的内容之前退出
- 139浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 戈兰岛的全球 GOPRIVATE 设置
- 204浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将结构作为参数传递给 xml-rpc
- 325浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何用golang获得小数点以下两位长度?
- 477浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何通过 client-go 和 golang 检索 Kubernetes 指标
- 486浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将多个“参数”映射到单个可变参数的习惯用法
- 439浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将 HTTP 响应正文写入文件后出现 EOF 错误
- 357浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 结构中映射的匿名列表的“复合文字中缺少类型”
- 352浏览 收藏
-
- Golang · Go问答 | 1年前 |
- NATS Jetstream 的性能
- 101浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将复杂的字符串输入转换为mapstring?
- 440浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 相当于GoLang中Java将Object作为方法参数传递
- 212浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何确保所有 goroutine 在没有 time.Sleep 的情况下终止?
- 143浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 23次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 30次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 34次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 36次使用
-
- GoLand调式动态执行代码
- 2023-01-13 502浏览
-
- 用Nginx反向代理部署go写的网站。
- 2023-01-17 502浏览
-
- Golang取得代码运行时间的问题
- 2023-02-24 501浏览
-
- 请问 go 代码如何实现在代码改动后不需要Ctrl+c,然后重新 go run *.go 文件?
- 2023-01-08 501浏览
-
- 如何从同一个 io.Reader 读取多次
- 2023-04-11 501浏览