当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas多列转结构:DataFrame合并方法

Pandas多列转结构:DataFrame合并方法

2025-12-01 17:45:36 0浏览 收藏

本文详细介绍了如何使用Pandas将多个DataFrame的列数据整合到统一结构中,解决数据分析中常见的异构数据合并问题。通过实例演示了如何利用`pd.concat`、列重命名和数据类型转换等技巧,将包含不同信息源的DataFrame进行有效合并。文章强调了数据预处理的重要性,包括使用`.copy()`避免修改原始数据,以及处理合并后可能出现的NaN值。掌握这些Pandas DataFrame合并技巧,能够显著提升数据处理效率,为后续的数据分析和报告提供坚实基础。

使用Pandas转换并合并DataFrame:多列映射至统一结构

本教程详细阐述了如何利用Pandas库将多个DataFrame中的特定列映射到统一的结构中,并通过转换和合并操作,实现将源DataFrame中的不同信息整合到目标DataFrame的现有列中。文章通过具体示例,展示了如何动态重命名、转换列数据类型,并最终使用`pd.concat`高效地整合数据,以满足特定的数据分析和报告需求。

在数据处理和分析中,我们经常会遇到需要将来自不同来源或具有不同结构的数据集合并到一起的情况。有时,这些数据源中的信息虽然存储在不同的列中,但其语义上却对应着目标数据集中的同一列。本教程将指导您如何使用Pandas库,有效地将一个DataFrame中的多列信息转换并映射到另一个DataFrame的统一列中,最终实现数据的整合。

场景分析与目标

假设我们有两个DataFrame,df1包含基本的用户信息,如姓名、年龄和性别。df2则在df1的基础上额外提供了用户的昵称(nick_name)信息,并且我们希望将这些昵称也整合到最终结果的“姓名”列中,同时对性别信息进行简化,并与df1的数据合并。

初始DataFrame示例:

df1 (第一个DataFrame):

import pandas as pd

data1 = {
    'name': ['smith row', 'sam smith', 'susan storm'],
    'age': [26, 30, 25],
    'sex': ['male', 'male', 'female']
}
df1 = pd.DataFrame(data1)
print("df1:")
print(df1)

输出:

         name  age     sex
0   smith row   26    male
1   sam smith   30    male
2  susan storm  25  female

df2 (第二个DataFrame):

data2 = {
    'name': ['smith row', 'sam smith', 'susan storm'],
    'age': [26, 30, 25],
    'sex': ['male', 'male', 'female'],
    'nick_name': ['smity', 'sammy', 'suanny']
}
df2 = pd.DataFrame(data2)
print("\ndf2:")
print(df2)

输出:

         name  age     sex nick_name
0   smith row   26    male     smity
1   sam smith   30    male     sammy
2  susan storm  25  female    suanny

我们的目标是生成一个包含df1所有行,以及df2中nick_name和简化后的sex信息的新DataFrame,结构如下:

         name   age    sex
0   smith row    26   male
1   sam smith    30   male
2  susan storm   25 female
3        smity  NaN      m
4        sammy  NaN      m
5       suanny  NaN      f

实现步骤

要达到上述目标,我们需要对df2进行一系列的转换操作,使其列结构与df1保持一致,然后再进行合并。

1. 准备第二个DataFrame (df2)

首先,我们需要修改df2,使其包含我们想要映射到最终结果的列,并移除不再需要的列。

a. 映射昵称到姓名列: 将df2中的nick_name列的值赋给name列。这样,df2的name列就包含了昵称信息,为后续合并做准备。

df2_modified = df2.copy() # 创建副本以避免修改原始df2
df2_modified['name'] = df2_modified['nick_name']

b. 简化性别信息: 将df2中的sex列的值简化为首字母(例如,'male'变为'm','female'变为'f')。这可以通过字符串切片操作实现。

df2_modified['sex'] = df2_modified['sex'].str[0]

c. 移除多余列: 为了确保df2_modified的列结构与df1兼容,我们需要删除df2_modified中不希望出现在最终合并结果中的列,例如age和nick_name。

df2_modified = df2_modified.drop(columns=['age', 'nick_name'])

经过这些步骤,df2_modified现在看起来是这样的:

       name sex
0     smity   m
1     sammy   m
2    suanny   f

请注意,此时df2_modified不再包含age列。

2. 合并DataFrame

现在df1和df2_modified具有相似的列结构(name和sex),我们可以使用pd.concat()函数将它们垂直合并。

df_final = pd.concat([df1, df2_modified], ignore_index=True)
  • [df1, df2_modified]:这是一个包含要合并的DataFrame的列表。
  • ignore_index=True:这个参数非常重要,它会重置合并后DataFrame的索引,使其从0开始连续编号,避免了原始DataFrame索引的冲突和重复。

完整代码示例

将上述步骤整合到一起,形成完整的解决方案:

import pandas as pd

# 初始DataFrame
data1 = {
    'name': ['smith row', 'sam smith', 'susan storm'],
    'age': [26, 30, 25],
    'sex': ['male', 'male', 'female']
}
df1 = pd.DataFrame(data1)

data2 = {
    'name': ['smith row', 'sam smith', 'susan storm'],
    'age': [26, 30, 25],
    'sex': ['male', 'male', 'female'],
    'nick_name': ['smity', 'sammy', 'suanny']
}
df2 = pd.DataFrame(data2)

print("原始 df1:")
print(df1)
print("\n原始 df2:")
print(df2)

# --- 转换 df2 以匹配目标结构 ---
# 1. 创建 df2 的副本以避免修改原始数据
df2_transformed = df2.copy()

# 2. 将 'nick_name' 列的值赋给 'name' 列
df2_transformed['name'] = df2_transformed['nick_name']

# 3. 简化 'sex' 列为首字母
df2_transformed['sex'] = df2_transformed['sex'].str[0]

# 4. 删除不再需要的列('age' 和 'nick_name')
df2_transformed = df2_transformed.drop(columns=['age', 'nick_name'])

print("\n转换后的 df2_transformed:")
print(df2_transformed)

# --- 合并 DataFrame ---
# 使用 pd.concat 垂直合并 df1 和 df2_transformed
# ignore_index=True 确保新的索引是连续的
df_final = pd.concat([df1, df2_transformed], ignore_index=True)

print("\n最终合并结果 df_final:")
print(df_final)

结果分析与注意事项

最终输出的df_final将是:

         name   age     sex
0   smith row  26.0    male
1   sam smith  30.0    male
2  susan storm  25.0  female
3        smity   NaN       m
4        sammy   NaN       m
5       suanny   NaN       f

关键点说明:

  1. NaN 值的出现: 在df_final中,来自df2_transformed的行在age列显示为NaN(Not a Number)。这是因为我们在合并前从df2_transformed中删除了age列。当使用pd.concat合并具有不同列集的DataFrame时,Pandas会自动填充缺失的列为NaN。
  2. 数据类型推断: 由于age列现在包含整数和NaN,Pandas可能会将其数据类型自动转换为浮点数(float64),因为NaN在Pandas中通常表示为浮点类型。如果您需要整数类型,可能需要在使用fillna()处理NaN后显式转换。
  3. 灵活性: 这种方法非常灵活,您可以根据需要对df2(或其他源DataFrame)进行任何复杂的转换,包括使用apply()函数进行自定义逻辑、使用map()进行值映射等,只要最终的列结构与目标DataFrame匹配,就可以顺利合并。
  4. 避免修改原始DataFrame: 在示例中,我们使用了df2.copy()来创建df2_transformed。这是一个良好的实践,可以避免意外修改原始df2数据,尤其是在后续分析中还需要使用原始数据的情况下。

总结

通过本教程,您学习了如何利用Pandas的强大功能,通过列的重命名、数据转换和pd.concat操作,将不同DataFrame中的多列信息有效地映射并整合到统一的结构中。理解这些技术对于处理真实世界中复杂且多样的数据集至关重要,它使您能够灵活地重塑和合并数据,以满足特定的分析需求。在进行此类操作时,始终要注意列的匹配、数据类型的兼容性以及缺失值的处理。

今天关于《Pandas多列转结构:DataFrame合并方法》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

抖音投放方式哪种好?可选区域推广吗抖音投放方式哪种好?可选区域推广吗
上一篇
抖音投放方式哪种好?可选区域推广吗
Golang云原生服务治理实战解析
下一篇
Golang云原生服务治理实战解析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3161次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3374次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3402次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4505次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3783次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码