Python并发编程实战指南
文章不知道大家是否熟悉?今天我将给大家介绍《Python并发模块使用教程》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!
concurrent.futures模块提供ThreadPoolExecutor和ProcessPoolExecutor两类执行器,分别用于I/O密集型和CPU密集型任务;通过submit提交任务返回Future对象,使用result获取结果,map实现并行映射,as_completed处理先完成的任务,配合with语句确保资源安全,适用于常见并发场景。

Python中的concurrent.futures模块提供了一种高级接口来异步执行可调用对象,使用线程或进程池非常方便。它通过ThreadPoolExecutor和ProcessPoolExecutor类简化了并发编程,适合处理I/O密集型或CPU密集型任务。
1. 基本概念与执行器类型
concurrent.futures的核心是Executor抽象类,有两个常用子类:
- ThreadPoolExecutor:适用于I/O密集型任务(如网络请求、文件读写)
- ProcessPoolExecutor:适用于CPU密集型任务(如数学计算、数据处理),能绕过GIL限制
两者都通过submit()提交任务,返回Future对象用于获取结果或状态。
2. 使用ThreadPoolExecutor
下面是一个多线程下载网页的例子:
from concurrent.futures import ThreadPoolExecutor
import requests
<p>def fetch_url(url):
response = requests.get(url)
return len(response.text)</p><p>urls = [
"<a target='_blank' href='https://www.17golang.com/gourl/?redirect=MDAwMDAwMDAwML57hpSHp6VpkrqbYLx2eayza4KafaOkbLS3zqSBrJvPsa5_0Ia6sWuR4Juaq6t9nq5roGCUgXuytMyerpV6iZXHe3vUmsyZr5vTk6a8eYanvpGjpn2MhqKu3LOijnmMlbN4cpSSt89pkqp5qLBkep6yo6Nkf42hpLLdyqKBrIXRsot-lpHdz3Y' rel='nofollow'>https://httpbin.org/delay/1</a>",
"<a target='_blank' href='https://www.17golang.com/gourl/?redirect=MDAwMDAwMDAwML57hpSHp6VpkrqbYLx2eayza4KafaOkbLS3zqSBrJvPsa5_0Ia6sWuR4Juaq6t9nq5roGCUgXuytMyerpV6iZXHe3vUmsyZr5vTk6a8eYanvpGjpn2ihqKu3LOijnmMlbN4cpSSt89pkqp5qLBkep6yo6Nkf42hpLLdyqKBrIXRsot-lpHdz3Y' rel='nofollow'>https://httpbin.org/delay/2</a>",
"<a target='_blank' href='https://www.17golang.com/gourl/?redirect=MDAwMDAwMDAwML57hpSHp6VpkrqbYLx2eayza4KafaOkbLS3zqSBrJvPsa5_0Ia6sWuR4Juaq6t9nq5roGCUgXuytMyerpV6iZXHe3vUmsyZr5vTk6a8eYanvpGjpn2MhqKu3LOijnmMlbN4cpSSt89pkqp5qLBkep6yo6Nkf42hpLLdyqKBrIXRsot-lpHdz3Y' rel='nofollow'>https://httpbin.org/delay/1</a>"
]</p><p>with ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(fetch_url, url) for url in urls]</p><pre class="brush:python;toolbar:false;">for future in futures:
print(f"Result: {future.result()}")说明:
- max_workers控制最大线程数
- submit()立即返回Future对象
- result()阻塞直到结果可用
3. 使用ProcessPoolExecutor
对于计算密集型任务,使用进程池更高效:
from concurrent.futures import ProcessPoolExecutor import math <p>def is_prime(n): if n < 2: return False for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: return False return True</p><p>numbers = [1000003, 1000033, 1000037, 1000039]</p><p>with ProcessPoolExecutor() as executor: results = list(executor.map(is_prime, numbers))</p><p>print(results)</p>
说明:
- map()类似内置map,但并行执行
- 函数必须可被pickle(不能是lambda或局部函数)
4. 处理多个任务的结果(as_completed)
如果希望任务一完成就处理结果,而不是按顺序等待,可以使用as_completed():
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
<p>def task(n):
time.sleep(n)
return f"Task {n} done"</p><p>with ThreadPoolExecutor() as executor:
futures = [executor.submit(task, t) for t in [3, 1, 2]]</p><pre class="brush:python;toolbar:false;">for future in as_completed(futures):
print(future.result())输出会先显示耗时短的任务结果,实现“谁先完成谁先处理”。
基本上就这些。掌握submit、map、as_completed和Future.result()这几个核心方法,就能应对大多数并发场景。注意资源管理使用with语句,避免泄漏。不复杂但容易忽略细节。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
Steam账号注册官网地址入口
- 上一篇
- Steam账号注册官网地址入口
- 下一篇
- Windows蓝屏bad_pool_caller怎么解决
-
- 文章 · python教程 | 17分钟前 |
- Python计算文件实际占用空间技巧
- 349浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 2小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python异步任务优化技巧分享
- 327浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm图形界面显示问题解决方法
- 124浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python自定义异常类怎么创建
- 450浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python抓取赛狗数据:指定日期赛道API教程
- 347浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python3中datetime常用转换方式有哪些?
- 464浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm无解释器问题解决方法
- 290浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3179次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3390次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3418次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4525次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3798次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

