当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

来源:51CTO.COM 2023-05-04 20:48:38 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

纯基于 MLP 的神经辐射场(NeRF)由于模型容量有限,在大规模场景模糊渲染中往往存在欠拟合现象。最近有研究者提出对场景进行地理划分、并采用多个子 NeRF,分别对每个区域进行建模,然而,这样做带来的问题是随着场景的逐渐扩展,训练成本和子 NeRF 的数量呈线性扩大。

另一种解决方案是使用体素特征网格表示,该方法计算效率高,可以自然地扩展到具有增加网格分辨率的大场景。然而,特征网格由于约束较少往往只能达到次优解,在渲染中产生一些噪声伪影,特别是在具有复杂几何和纹理的区域。

本文中,来自香港中文大学、上海人工智能实验室等机构的研究者提出了一个新的框架,用来实现高保真渲染的城市(Ubran)场景,同时兼顾计算效率,入选 CVPR 2023。该研究使用一个紧凑的多分辨率 ground 特征平面表示来粗略地捕获场景,并通过一个 NeRF 分支网络用位置编码输入来补充它,以联合学习的方式进行渲染。这种方式集成了两种方案的优点:在特征网格表示的指导下,轻加权 NeRF 足以呈现具有细节的逼真新视角;联合优化的 ground 特征平面可以获得进一步的细化,形成更精确、更紧凑的特征空间,输出更自然的渲染结果。

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

  • 论文地址:https://arxiv.org/pdf/2303.14001.pdf
  • 项目主页:https://city-super.github.io/gridnerf/

下图为该研究方法对真实世界 Ubran 场景的示例结果,给人一种沉浸式城市漫游体验:

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

方法介绍

为了有效利用隐式神经表示重建大型城市场景,该研究提出了一个双分支模型架构,它采用统一的场景表示,集成了基于显式体素网格和基于隐式的 NeRF 方法,这两种类型的表示可以互补。

首先在预训练阶段使用特征网格对目标场景进行建模,从而粗糙地捕捉场景的几何形状和外观。然后使用粗特征网格,1) 引导 NeRF 点采样,使其集中在场景表面周围;2) 为 NeRF 的位置编码提供关于场景几何形状和在采样位置上的外观额外特征。在这样的指导下,NeRF 可以在一个大大压缩的采样空间中有效地获取更精细的细节。此外,由于粗层级的几何图形和外观信息被明确地提供给 NeRF,一个轻量级的 MLP 就足以学习从全局坐标到体积密度和颜色值的映射。在第二个联合学习阶段,通过来自 NeRF 分支的梯度对粗特征网格进行进一步优化,并对其进行规范化,从而在单独应用时产生更准确和自然的渲染结果。

该研究的核心是一个新的双分支结构,即网格分支和 NeRF 分支。1) 研究人员首先在预训练阶段捕捉特征平面的金字塔场景,并通过浅 MLP 渲染器(网格分支)对射线点进行粗略的采样,并预测它们的辐射值,由体积积分像素颜色上的 MSE 损失监督。这一步生成一组信息丰富的多分辨率密度 / 外观特征平面。2) 接下来,研究人员进入联合学习阶段,并进行更精细的抽样。研究人员使用学习到的特征网格来指导 NeRF 分支采样,以集中在场景表面。通过在特征平面上的双线性插值法,推导出采样点的网格特征。然后将这些特征与位置编码连接,并输入 NeRF 分支以预测体积密度和颜色。请注意,在联合训练过程中,网格分支的输出仍然使用 ground 真实图像以及来自 NeRF 分支的精细渲染结果进行监督。

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

目标场景:在这项工作中,该研究使用新颖的网格引导神经辐射场执行大型城市场景渲染。下图左侧显示了一个大型城市场景的示例,它跨越 2.7km^2 的地面区域,由超过 5k 的无人机图像捕获。研究表明,基于 NeRF 方法渲染结果模糊且过度平滑且模型容量有限,而基于特征网格的方法在适应具有高分辨率特征网格的大规模场景时往往会显示嘈杂的伪影。该研究提出的双分支模型结合了两种方法的优点,并通过对现有方法的显着改进实现了逼真的新颖视图渲染。这两个分支都比各自的基线获得了显着增强。

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

实验

研究人员在下图和表格中报告了 baseline 的性能和研究人员的方法作对比。无论从定性和定量上看。在视觉质量和所有指标方面都可以观察到显著的改善。与纯粹的基于 MLP 的方法(NeRF 和 Mega-NeRF)相比,研究人员的方法揭示了更清晰的几何形状和更精细的细节。特别是由于 NeRF 的有限容量和光谱偏差,它总是不能模拟几何形状和颜色的快速变化,如操场上的植被和条纹。尽管像 Mega-NeRF 的 baseline 中显示的那样,在地理位置上将场景划分为小区域稍有帮助,但呈现的结果仍然显得过于平滑。相反,在学习特征网格的引导下,NeRF 的采样空间被有效地、大大地压缩到场景表面附近。从 ground 特征平面采样的密度和外观特征明确地表示了场景内容,如图 3 所示。尽管不那么准确,但它已经提供了信息丰富的局部几何图形和纹理,并鼓励 NeRF 的位置编码来收集缺失的场景细节。

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

下表 1 为定量结果:

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

图 6 可以观察到渲染保真度的快速提高:

联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真

了解更多内容,请参考原论文。

以上就是《联合NeRF与特征网格,实现超大规模城市渲染,高效且逼真》的详细内容,更多关于应用,研究的资料请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
AI在劳动节淘汰7800打工人,永久的AI在劳动节淘汰7800打工人,永久的
上一篇
AI在劳动节淘汰7800打工人,永久的
mysql中varchar类型如何实现日期进行比较、排序等操作
下一篇
mysql中varchar类型如何实现日期进行比较、排序等操作
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    14次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    14次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    17次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    19次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    32次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码