当前位置:首页 > 文章列表 > 数据库 > MySQL > MySQL优化及索引的方法

MySQL优化及索引的方法

来源:亿速云 2023-04-27 12:39:33 0浏览 收藏

数据库不知道大家是否熟悉?今天我将给大家介绍《MySQL优化及索引的方法》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

索引简单介绍

索引的本质:

  • MySQL索引或者说其他关系型数据库的索引的本质就只有一句话,以空间换时间。

索引的作用:

  • 索引关系型数据库为了加速对表中行数据检索的(磁盘存储的)数据结构

索引的分类

数据结构上面的分类:

  • HASH 索引

    • 等值匹配效率高

    • 不支持范围查找

  • 树形索引

    • 二叉树,递归二分查找法,左小右大

    • 平衡二叉树,二叉树到平衡二叉树,主要原因是左旋右旋

    • 缺点1,IO次数过多

    • 缺点2,IO利用率不高,IO饱和度

  • 多路平衡查找树(B-Tree)

    • 特点,大大的减少了树的高度

  • B+树

    • 特点,采用左闭合的比较方式

    • 根节点支节点没有数据区,只有叶子结点才包含数据区(说白了就是即便在根节点和子节点已经定位到,因为没有数据区的原因也不会停留,会一直找到叶子结点为止。)

当我们搜索13这条数据时,在根节点和子节点 都能定位,但是一直会找到叶子结点。

MySQL优化及索引的方法

二叉树平衡二叉树,B树对比:

如图显示如果是自增主键情况下:

二叉树显然不适合做关系型数据库索引(和全表扫描没什么区别)。

平衡二叉树呢,虽然解决了这种情况,但是同样会导致这棵树,又瘦又高,这同样会造成上文所提到查询IO次数过多以及IO利用率不高。

B树呢,显然已经解决了这两个问题,所以下文来解释,为什么在这种情况下MySQL还用了B+树,又做了那些增强。

MySQL优化及索引的方法

B树和B+树比较:

MySQL优化及索引的方法

B+树在B树上面的优化:

IO效率更高(B树每个节点都会保留数据区,而B+树则不会,假设我们查询一条数据要遍历三层,那么显然B+树查询中IO消耗更小)

范围查找效率更高(如图,B+树已经形成了一个天然链表形式,只需要根据最结尾的链式结构查找)

MySQL优化及索引的方法

基于索引的数据扫描效率更高。

索引类型的分类

索引类型可分为两类:

  • 主键索引

  • 辅佐索引(二级索引)

    • 唯一性索引

    • 复合索引

    • 普通索引

    • 覆盖索引

主键索引相对来说性能是最好的,但是对于SQL优化,其实大多时候我们都在辅佐索引上面做一些改进和补充。

B+树在储存引擎层面落地

  • 我们创建两个表分别为test_innodb(采用InnoDB作为储存引擎)test_myisam(采用MyISAM作为储存引擎)下图是两张表磁盘落地的相关文件,这两个储存引擎在B+树磁盘落地式截然不同的。

MySQL优化及索引的方法

B+树在MyISAM落地:

  • *.frm文件是表格骨架文件比如这个表中的id字段name字段是什么类型的存储在这里

  • *.MYD(D=data)则储存数据

  • *.MYI (I=index)则储存索引

MySQL优化及索引的方法

  • 比如现在执行如下sql语句 ,那么在MyISAM中他就是先在test_myisam.MYI中查找到103然后拿到0x194281这个地址然后再去test_myisam.MYD中找到这个数据返回。

SELECT id,name from test_myisam where id =103

MySQL优化及索引的方法

  • 如果test_myisam表中,id为主键索引,name也是一个索引,那么在test_myisam.MYI中则会有两个平级的B+树,这也导致MyISAM引擎中主键索引和二级索引是没有主次之分的,是平级关系。因为这种机制在MyISAM引擎中,有可能使用多个索引,在InnoDB中则不会出现这种情况。

B+树在InnoDB落地:

MySQL优化及索引的方法

MySQL优化及索引的方法

  • InnoDB不像MyISAM来独立一个MYD 文件来存储数据,它的数据直接存储在叶子结点关键字对应的数据区在这保存这一个id列所有行的详细记录。

  • InnoDB 主键索引和辅助索引关系

我们现在执行如下SQL语句,他会先去找辅助索引,然后找到辅助索引下101的主键,再去回表(二次扫描)根据主键索引查询103这条数据将其返回。

SELECT id,name from test_myisam where name ='zhangsan'

这里就有一个问题了,为什么不像MyISAM在辅助索引下直接记录磁盘地址,而是要多此一举再去回表扫描主键索引,这个问题在下面相关面试题中回答,记一下这个问题是这里来的。

MySQL优化及索引的方法

相关面试题

  • 为什么MySQL选择B+树作为索引结构

这个就不说了,上文应该讲清楚了。

  • B+树在MyISAM和InnoDB落地区别。

这个可以总结一下,MyISAM落地数据储存会有三个类型文件 ,.frm文件是表骨架文件,.MYD(D=data)则储存数据 ,.MYI (I=index)则储存索引,MyISAM引擎中主键索引和二级索引平级关系,在MyISAM引擎中,有可能使用多个索引,InnoDB则相反,主键索引和二级索有严格的主次之分在InnoDB一条语句只能用一个索引要么不用。

  • 如何判断一条sql语句是否使用了索引。

可以通过执行计划来判断 可以在sql语句前explain/ desc

set global optimizer_trace='enabled=on' 打开执行计划开关他将会把每一条查询sql执行计划记录在information_schema 库中OPTIMIZER_TRACE表中

  • 为什么主键索引最好选择自增列?

自增列,数据插入时整个索引树是只有右边在增加的,相对来说索引树的变动更小。

  • 为什么经常变动的列不建议使用索引?

和上一个问题原因一样,当一个索引经常发生变化,那么就意味这,这个缩印树也要经常发生变化。4

  • 为什么说重复度高的列,不建议建立索引?

这个原因是因为离散性,比如说,一张一百万数据的表,其中一个字段代表性别,0代表男1代表女,把这字段加了索引,那么在索引树上,将会有大量的重复数据。而我们常见的索引建立一般都是驱动型的。其目的是,尽可能的删减数据的查询范围,这个显然是不匹配的。

  • 什么是联合索引

联合索引是一个包含了多个功效的索引,他只是一个索引而不是多个,

其次,单列索引是一种特殊的联合索引

联合索引的创立要遵循最左前置原则(最常用列>离散度>占用空间小)

  • 什么是覆盖索引

通过索引项信息可直接返回所需要查询的索引列,该索引被称之为覆盖索引,说白了就是不需要做回表操作,可以从二级索引中直接取到所需数据。

  • 什么是ICP机制

索引下推,简单点来说就是,在sql执行过程中,面对where多条件过滤时,通过一个索引,完成数据搜索和过滤条件其,特点能减少io操作。

  • 在InnoDB表中不可能没有主键对还是不对原因是什么?

首先这句话是对的,但是情况有三种:

  • 就是在你手动显式指定这一个字段为主键时候,会以这一个字段为聚集索引。

  • 在没有显式指定主键时候有两种情况:

  • 他会寻找第一个UK(unique key)作为主键索引组织索引编排。

  • 如果既没有指定主键也没有UK的情况下,此时会以rowId(在InnoDB表中每一个记录都会有一个隐藏(6byte)的rowId)为聚集索引。

  • 什么是回表操作

在InnoDB 中基于辅助索引查询的内容,从辅助索引中无法直接获取,需要基于主键索引的二次扫描的操作叫做回表操作。

  • 为什么在InnoDB 中辅助索引叶子结点数据区记录的是主键索引的值而不是像MyISAM中去记录磁盘地址。

这个原因其实很简单,因为主键索引的数据结构是会经常发生变化的,如果在辅助索引数据区记录磁盘地址,那么假设我们有10个辅助索引,当我们主键索引结构发生变化后,还要一个个去通知辅助索引,且主键索引结构是经常发生变化的,增删都有可能影响他的
数据结构。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于数据库的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
录用1827篇,接收率27.9%,ICML 2023接收结果公布录用1827篇,接收率27.9%,ICML 2023接收结果公布
上一篇
录用1827篇,接收率27.9%,ICML 2023接收结果公布
下一篇
"体育产业的AI应用:五个重要领域"
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • Vozo AI:超真实AI视频换脸工具,提升创意内容制作
    Vozo AI
    探索Vozo AI,一款功能强大的在线AI视频换脸工具,支持跨性别、年龄和肤色换脸,适用于广告本地化、电影制作和创意内容创作,提升您的视频制作效率和效果。
    2次使用
  • AIGAZOU:免费AI图像生成工具,简洁高效,支持中文
    AIGAZOU-AI图像生成
    AIGAZOU是一款先进的免费AI图像生成工具,无需登录即可使用,支持中文提示词,生成高清图像。适用于设计、内容创作、商业和艺术领域,提供自动提示词、专家模式等多种功能。
    2次使用
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    30次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    45次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码