当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

来源:51CTO.COM 2023-04-25 22:00:46 0浏览 收藏

一分耕耘,一分收获!既然都打开这篇《Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!

基于文本的图像生成模型火了,出圈的不止有扩散模型,还有开源的Stable Diffusion模型。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

最近一位瑞士的软件工程师Matthias Bühlmann无意间发现,Stable Diffusion不仅能用来生成图像,还可以用来压缩位图图像,甚至比JPEG和WebP的压缩率更高。

比如一张美洲骆驼的照片,原图为768KB,使用JPEG压缩到5.66KB,而Stable Diffusion可以进一步压缩到4.98KB,而且能够保留更多高分辨率的细节以及更少的压缩伪影,肉眼可见地优于其他压缩算法。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

不过这种压缩方式也存在缺陷,即不适合压缩人脸和文本图像,在某些情况下,甚至会生成一些原图并不存在内容

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然重新训练一个自编码器也能做到类似于Stable Diffusion的压缩效果,但使用Stable Diffusion的一个主要优势在于,有人已经投入了上百万的资金帮你训练了一个,你又何必重新花钱训练一个压缩模型呢?

Stable Diffusion如何压缩图像

扩散模型正在挑战生成模型的霸主地位,对应的开源Stable Diffusion模型也在机器学习社区掀起一场艺术革命。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

Stable Diffusion由三个训练后的神经网络串联得到,即一个变分自编码器(VAE)U-Net模型一个文本编码器

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

变分自编码器对图像空间中的图像进行编码和解码,从而获得该图像在潜空间的表征向量,以一个分辨率更低(64x64)具有更高精度(4x32bit)的向量来表示源图像(3x8或4x8bit的512x512)

VAE在将图像编码到潜空间的训练过程主要依赖自监督学习,即输入和输出都是源图像,因此随着模型进一步训练,不同版本的模型的潜空间表征可能会看起来不同。

使用Stable Diffusion v1.4的潜空间表征通过重新映射和解释为4通道彩色图像后,看起来就是下图的中间图像,源图像中的主要特征仍然可见

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

需要注意的是,VAE往返编码一次并不是无损的

比如在解码之后,蓝色带子上的ANNA名字就没有源图像那么清晰了,可读性显著降低。

Stable Diffusion v1.4中的变分自编码器不太擅长表示小文本以及人脸图像,不知道在v1.5版本中是否会改善。

Stable Diffusion的主要压缩算法就是利用图像的这种潜空间表征,从短文本描述中生成新的图像。

从潜空间表征的随机噪声开始,使用充分训练的U-Net迭代去除潜空间图像的噪声,用一种更简单的表征输出模型认为它在这个噪声中「看到」的预测,有点像我们在看云的时候,从不规则的图形中还原出脑海里的形状或面孔

当使用Stable Diffusion来生成图像时,这个迭代去噪步骤是由第三个组件,即文本编码器引导的,该编码器为U-Net提供关于它应该尝试在噪声中看到什么的信息。

不过对于压缩任务来说,并不需要文本编码器,所以实验过程只创建了一个空字符串的编码用于告诉U-Net在图像重建过程中进行非引导去噪

为了使用Stable Diffusion作为图像压缩编解码器,算法需要有效地压缩由VAE产生的潜表征。

在实验中可以发现,对潜表征进行下采样或者直接使用现有的有损图像压缩方法,都会大大降低重建图像的质量。

但作者发现 VAE 的解码似乎对潜表征的量化(quantization)非常有效。

通过对从浮点到8位无符号整数的潜量化进行缩放、拖拽(clamping)和重新映射,只会产生很小的可见重构错误。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

通过量化8位的潜表征,图像表示的数据大小现在是64*64*4*8bit=16kB ,远小于未压缩源图像的512*512*3*8bit=768kB

如果潜表征的位数小于8bit,无法产生比较好的效果。

如果对图像进一步执行调色板(palettizing)抖动(dithering),则量化效果就会再次提升。

使用256*4*8位向量和Floyd-Steinberg抖动的潜表征创建了一个调色板表示,使数据大小进一步压缩到64*64*8+256*4*8bit=5kB

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

潜空间调色板的抖动会引入噪声,从而扭曲了解码结果。但由于Stable Diffusion是基于潜噪声的去除,所以可以使用U-Net去除抖动引起的噪声。

经过4次迭代,重建结果在视觉上非常接近未量化的版本。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然数据量大大减少了(源图像为压缩图像的155倍大),但效果是非常好的,不过也引入了一些伪影(比如原图的心形图案中不存在伪影)。

有趣的是,这种压缩方案引入的伪影对图像内容的影响比对图像质量的影响更大,而且以这种方式压缩的图像可能包含这些类型的压缩伪影。

作者还用zlib对调色板和索引进行了无损压缩,在测试样本中,大多数的压缩结果都小于5kb,但这种压缩方法仍然存在更多的优化空间。

为了评估该压缩编解码器,作者没有使用任何在网上找到的标准测试图像,因为网上的图像都有可能在Stable Diffusion的训练集中出现过,而压缩这类图像可能会导致不公平的对比优势。

为了尽可能公平地进行比较,作者使用了Python图像库中最高质量的编码器设置,以及使用mozjpeg库添加了压缩后的JPG数据的无损数据压缩。

值得注意的是,虽然Stable Diffusion的结果主观上看起来比JPG和WebP压缩的图像要好得多,但在标准测量指标(如PSNR或SSIM)方面,它们并没有明显更好,但也没有更差。

只是引入的伪影类型不那么明显,因为它们对图像内容的影响大于对图像质量的影响。

这种压缩方法也有一点危险,虽然重建特征的质量很高,但内容可能会受到压缩伪影的影响,即使它看起来非常清晰。

例如,在一张测试图像中,虽然Stable Diffusion作为编解码器在保持图像的质量方面要好得多,甚至连相机颗粒纹理(camera grain)都能保留下来(这是大多数传统压缩算法难以做到的) ,但其内容仍然受到压缩伪影的影响,像建筑物形状这样的精细特征可能会发生变化。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然在JPG压缩图像中当然不可能比在Stable Diffusion压缩图像中识别出更多的真实值,但是Stable Diffusion压缩结果的高视觉质量可能具有欺骗性,因为JPG和WebP中的压缩伪影更容易识别。

如果你也想动手复现一遍实验,作者在Colab上开源了代码。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

代码链接:​https://colab.research.google.com/drive/1Ci1VYHuFJK5eOX9TB0Mq4NsqkeDrMaaH?usp=sharing​

最后,作者表示,文章中设计的实验仍然是相当浅显的,但效果仍然令人惊喜,未来仍然有很大的改进空间

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
带你读 MySQL 源码:Select *带你读 MySQL 源码:Select *
上一篇
带你读 MySQL 源码:Select *
微软向 Insiders 提供免费 USB 驱动器以重新安装 Windows 11
下一篇
微软向 Insiders 提供免费 USB 驱动器以重新安装 Windows 11
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    15次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    24次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    42次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码