当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas行最小值及对应列获取方法

Pandas行最小值及对应列获取方法

2025-10-21 19:36:41 0浏览 收藏

本文详细介绍了在 Pandas DataFrame 中查找每行最小值及其关联列的高效方法,并着重强调了该方法在数据分析中的实用性。通过实例演示,展示了如何利用 Pandas 的 `idxmin`、`str.replace` 和 `get_indexer_for` 等核心函数,避免了繁琐的循环迭代,从而显著提升数据处理速度。教程旨在帮助读者掌握一种简洁且性能优越的 Pandas 技巧,实现从数值列到关联非数值列的快速映射,例如根据最低价格查找对应的产品名称。掌握此方法,能有效提升数据分析效率,更快速地从海量数据中提取关键信息。特别是在需要同时获取最小值和相关标签时,本文提供的方法具有很高的参考价值。

Pandas DataFrame:高效获取行级最小值及其对应关联列值

本教程详细介绍了如何在 Pandas DataFrame 中高效地查找每一行的最小值,并进一步提取与该最小值对应的非数值型关联列值(例如,项目名称)。文章通过一个具体的示例,展示了如何利用 idxmin、str.replace 和 get_indexer_for 等 Pandas 功能,以简洁且性能优越的方式实现这一常见的数据处理需求,避免了复杂的迭代或 apply 操作。

引言

在数据分析中,我们经常需要从 DataFrame 的多列中找出每行的最小值。然而,除了最小值本身,有时我们还需要知道是哪一列或哪个“项目”对应了这个最小值。例如,在一个包含多个产品值及其对应产品名称的 DataFrame 中,我们可能需要找出每行中最低的价格以及对应的产品名称。本教程将展示如何利用 Pandas 的强大功能,以一种高效且优雅的方式解决这个问题。

示例数据准备

首先,我们创建一个示例 Pandas DataFrame,其中包含数值列(如 Value1, Value2, Value3)和与之关联的非数值型列(如 Item1, Item2, Item3)。

import pandas as pd

df = pd.DataFrame({
   'Item1': ['A', 'B', 'C', 'D'],
   'Value1': [1,4,5,7],
   'Item2': ['F', 'G', 'H', 'I'],
   'Value2': [0,4,8,12],
   'Item3': ['K', 'L', 'M', 'N'],
   'Value3': [2.7,3.4,6.2,8.1],
})

print("原始 DataFrame:")
print(df)

输出的原始 DataFrame 如下:

原始 DataFrame:
  Item1  Value1 Item2  Value2 Item3  Value3
0     A       1     F       0     K     2.7
1     B       4     G       4     L     3.4
2     C       5     H       8     M     6.2
3     D       7     I      12     N     8.1

我们的目标是添加两列:Min_Value (每行的最小值) 和 Min_Item (对应最小值的项目名称)。

步骤一:查找每行的最小值及其所在列名

首先,我们需要确定哪些列参与最小值的比较。在这个例子中,是 Value1, Value2, Value3。

# 定义参与比较的数值列
value_cols = ['Value1', 'Value2', 'Value3']

# 使用 idxmin(axis=1) 找出每行最小值所在的列名
# 结果是一个 Series,其索引是 DataFrame 的行索引,值是最小值所在列的名称(如 'Value1', 'Value2')
min_value_col_names = df[value_cols].idxmin(axis=1)

# 获取行索引序列,用于后续的基于 NumPy 数组的索引
row_indices = range(len(df))

# 利用 df.values 和 get_indexer_for 提取最小值
# df.values 将 DataFrame 转换为 NumPy 数组,可以进行高效的整数位置索引
# df.columns.get_indexer_for(min_value_col_names) 将列名 Series 转换为对应的整数列索引 Series
df['Min_Value'] = df.values[row_indices, df.columns.get_indexer_for(min_value_col_names)]

print("\n添加 Min_Value 后的 DataFrame:")
print(df)

此时 DataFrame 会新增 Min_Value 列:

添加 Min_Value 后的 DataFrame:
  Item1  Value1 Item2  Value2 Item3  Value3  Min_Value
0     A       1     F       0     K     2.7        0.0
1     B       4     G       4     L     3.4        3.4
2     C       5     H       8     M     6.2        5.0
3     D       7     I      12     N     8.1        7.0

步骤二:提取对应最小值的关联列值(项目名称)

关键在于如何将 min_value_col_names (例如 'Value1') 转换为其对应的项目列名 (例如 'Item1')。这里我们可以利用字符串替换功能。

# 将最小值所在列的名称(如 'Value1')转换为对应的项目列名(如 'Item1')
# 假设项目列名和值列名之间存在 'Value' 到 'Item' 的简单映射关系
min_item_col_names = min_value_col_names.str.replace('Value', 'Item')

# 再次利用 df.values 和 get_indexer_for 提取对应的项目名称
df['Min_Item'] = df.values[row_indices, df.columns.get_indexer_for(min_item_col_names)]

print("\n最终结果 DataFrame:")
print(df)

最终输出的 DataFrame 将包含 Min_Value 和 Min_Item 两列,符合我们的预期:

最终结果 DataFrame:
  Item1  Value1 Item2  Value2 Item3  Value3  Min_Value Min_Item
0     A       1     F       0     K     2.7        0.0        F
1     B       4     G       4     L     3.4        3.4        L
2     C       5     H       8     M     6.2        5.0        C
3     D       7     I      12     N     8.1        7.0        D

完整代码示例

为了方便理解和使用,下面是实现上述功能的完整代码块:

import pandas as pd

# 示例 DataFrame
df = pd.DataFrame({
   'Item1': ['A', 'B', 'C', 'D'],
   'Value1': [1,4,5,7],
   'Item2': ['F', 'G', 'H', 'I'],
   'Value2': [0,4,8,12],
   'Item3': ['K', 'L', 'M', 'N'],
   'Value3': [2.7,3.4,6.2,8.1],
})

# 1. 定义参与比较的数值列
value_cols = ['Value1', 'Value2', 'Value3']

# 2. 获取每行最小值所在列的名称
# axis=1 表示按行操作
min_value_col_names = df[value_cols].idxmin(axis=1)

# 3. 获取行索引序列,用于基于 NumPy 数组的索引
row_indices = range(len(df))

# 4. 提取每行的最小值
# df.values 将 DataFrame 转换为 NumPy 数组,支持高效的整数位置索引
# df.columns.get_indexer_for() 将列名 Series 转换为对应的整数列索引 Series
df['Min_Value'] = df.values[row_indices, df.columns.get_indexer_for(min_value_col_names)]

# 5. 将最小值所在列的名称转换为对应的项目列名
# 假设项目列名和值列名之间存在 'Value' 到 'Item' 的简单映射关系
min_item_col_names = min_value_col_names.str.replace('Value', 'Item')

# 6. 提取对应的项目名称
df['Min_Item'] = df.values[row_indices, df.columns.get_indexer_for(min_item_col_names)]

print("最终处理结果 DataFrame:")
print(df)

关键概念解析

  • df[cols].idxmin(axis=1): 这个方法用于找出指定列 cols 中每行最小值的列名。axis=1 指示按行操作。它返回一个 Series,其索引是原始 DataFrame 的行索引,值是最小值所在列的名称。
  • df.values: 将 Pandas DataFrame 转换为底层的 NumPy 数组。NumPy 数组支持非常高效的整数位置索引,这对于大规模数据处理至关重要。
  • df.columns.get_indexer_for(labels): 这个方法接收一个标签(列名或索引名)列表或 Series,并返回这些标签在 DataFrame 列索引中的整数位置。例如,df.columns.get_indexer_for(['Value1', 'Item2']) 可能会返回 [1, 2](如果 'Value1' 是第1列,'Item2' 是第2列)。这使得我们可以使用整数位置来高效地从 df.values 中提取数据。
  • Series.str.replace('old', 'new'): 这是 Pandas Series 字符串方法的强大功能之一,允许我们对 Series 中的每个字符串元素执行字符串替换操作。在此例中,它将 'ValueX' 转换为 'ItemX',实现了列名映射。

注意事项与总结

  1. 命名约定: 本教程的方法高度依赖于数值列 (ValueX) 和关联列 (ItemX) 之间的命名约定。如果你的列名没有这种规律性(例如,PriceA, ProductA_Name),你需要采用更复杂的映射逻辑(如使用字典进行 map 操作)。
  2. 性能: 这种方法通过利用 Pandas 和 NumPy 的底层优化,避免了显式的 Python 循环或 df.apply() 函数(尤其是在处理大型 DataFrame 时,apply 可能会较慢),因此在性能上非常高效。
  3. 灵活性: 这种模式可以推广到其他类似的需求,例如查找最大值及其关联列,或者根据特定条件查找值及其关联信息。

通过上述步骤,我们不仅找到了每行的最小值,还成功地提取了与之对应的关联信息,这在实际数据分析工作中是非常有用的技巧。掌握这种高效的 Pandas 索引和字符串处理方法,将大大提升你的数据处理能力。

今天关于《Pandas行最小值及对应列获取方法》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

美团0元早餐怎么领?入口及攻略全解析美团0元早餐怎么领?入口及攻略全解析
上一篇
美团0元早餐怎么领?入口及攻略全解析
Golang解析XML数据方法详解
下一篇
Golang解析XML数据方法详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3167次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3380次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3409次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4513次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3789次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码