USB:首个将视觉、语言和音频分类任务进行统一的半监督分类学习基准
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《USB:首个将视觉、语言和音频分类任务进行统一的半监督分类学习基准》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
当前,半监督学习的发展如火如荼。但是现有的半监督学习基准大多局限于计算机视觉分类任务,排除了对自然语言处理、音频处理等分类任务的一致和多样化评估。此外,大部分半监督论文由大型机构发表,学术界的实验室往往由于计算资源的限制而很难参与到推动该领域的发展中。
为此,微软亚洲研究院的研究员们联合西湖大学、东京工业大学、卡内基梅隆大学、马克斯-普朗克研究所等机构的科研人员提出了 Unified SSL Benchmark(USB):第一个将视觉、语言和音频分类任务进行统一的半监督分类学习基准。
该论文不仅引入了更多样化的应用领域,还首次利用视觉预训练模型大大缩减了半监督算法的验证时间,使得半监督研究对研究者,特别是小研究团体更加友好。相关论文已被国际人工智能领域顶级学术大会 NeurIPS 2022 接收。
文章链接:https://arxiv.org/pdf/2208.07204.pdf
代码链接:https://github.com/microsoft/Semi-supervised-learning
监督学习通过构建模型来拟合有标记数据,当使用监督学习 (supervised learning)对大量高质量的标记数据(labeled data)进行训练时,神经网络模型会产生有竞争力的结果。
例如,据 Paperswithcode 网站统计,在 ImageNet 这一百万量级的数据集上,传统的监督学习方法可以达到超过88%的准确率。然而,获取大量有标签的数据往往费时费力。
为了缓解对标注数据的依赖,半监督学习(semi-supervised learning/SSL)致力于在仅有少量的标注数据时利用大量无标签数据(unlabeled data)来提升模型的泛化性。半监督学习亦是机器学习的重要主题之一。深度学习之前,这一领域的研究者们提出了诸如半监督支持向量机、熵正则化、协同训练等经典算法。
深度半监督学习
随着深度学习的兴起,深度半监督学习算法也取得了长足的进步。同时,包括微软、谷歌、和 Meta 等在内的科技公司也认识到了半监督学习在实际场景中的巨大潜力。
例如,谷歌利用噪声学生训练(noisy student training)这一半监督算法提高了其在搜索方面的性能[1]。当前最具代表性的半监督算法通常对标注数据使用交叉熵损失进行训练,对无标注数据使用一致性正则技术(consistency regularization)鼓励对输入扰动进行不变预测。
例如,谷歌在 NeurIPS 2020 提出的 FixMatch[2] 算法,利用增强锚定(augmentation anchoring)和固定阈值(fixed thresholding)技术来增强模型对不同强度增强数据的泛化性和减少噪声伪标签(noisy pseudo labels)的影响。在训练中,FixMatch 过滤了低于用户指定(user-provided / pre-defined)阈值的无标签数据。
微软亚洲研究院与东京工业大学等在 NeurIPS 2021 合作提出的 FlexMatch[3] 则考虑到了不同类之间的学习难度不同,因此提出了课程伪标签(curriculum pseudo labeling)技术,对于不同类应该采用不同的阈值。
具体来说,对于容易学习的类别,模型应该设置高阈值以降低噪声伪标签的影响;对于难学习的类别,模型应该设置低阈值鼓励该类的拟合。每个类的学习难度评估取决于落入该类且高于固定值的未标记数据样本的数量。
同时,微软亚洲研究院的研究员们还合作提出了一个统一的基于 Pytorch 的半监督方法代码库 TorchSSL[4],对该领域的深度方法、常用数据集和基准结果进行了统一的支持。
图1:FlexMatch 算法流程
当前半监督学习代码库存在的问题与挑战
尽管半监督学习的发展如火如荼,但是,研究员们注意到目前大部分半监督方向的论文只关注计算机视觉 (CV) 分类任务,对于其他领域,例如自然语言处理 (NLP)、音频处理 (audio),研究者无法得知这些在 CV 任务上有效的算法到了不同领域是否依然有效。
另外,大部分半监督相关的论文都是由大型机构发表,学术界的实验室往往由于计算资源的限制而很难参与到推动该领域的发展中。总的来说,半监督学习基准目前存在以下两个问题:
(1)多样性不足。现有的半监督学习基准大多局限于 CV 分类任务(即 CIFAR-10/100,SVHN,STL-10 和 ImageNet 分类),排除了对 NLP、audio 等分类任务的一致和多样化评估,而在 NLP 和 audio 中缺乏足够的标记数据也是一个普遍问题。
(2)耗时且对学术界不友好。现有的半监督学习基准(如 TorchSSL)通常是耗时且不环保的,因为它往往需要从头开始训练深度神经网络模型。具体而言,使用TorchSSL 评估 FixMatch[1]大约需要300个 GPU 日。如此高的训练成本使得许多研究实验室(尤其是学术界的实验室或小研究团体)无法负担得起 SSL 的相关研究,从而阻碍了 SSL 的进展。
USB:任务多样化且对研究者更友好的新基准库
为了解决上述问题,微软亚洲研究院的研究员们联合西湖大学、东京工业大学、卡内基梅隆大学、马克斯-普朗克研究所等机构的科研人员提出了 Unified SSL Benchmark(USB),这是第一个将视觉、语言和音频分类任务进行统一的半监督分类学习基准。
相比于之前的半监督学习基准(如 TorchSSL)只关注少量视觉任务,该基准不仅引入了更多样化的应用领域,还首次利用视觉预训练模型(pretrained vision Transformer)大大缩减了半监督算法的验证时间(从7000 GPU 时缩减至900 GPU 时),从而使得半监督研究对研究者、特别是小研究团体更为友好。
相关论文已被国际人工智能领域的顶级学术大会 NeurIPS 2022 接收。(点击「阅读原文」可了解更多)
USB 提供的解决方案
那么,USB 如何一次性解决当前半监督基准所存在的问题呢?研究员们主要进行了如下改进:
(1)为增强任务多样性,USB 引入了5个 CV 数据集,5个 NLP 数据集和5个 audio 数据集,并提供了一个多样化且具有挑战性的基准,从而能够对来自不同领域的多个任务进行一致的评估。表1提供了 USB 与 TorchSSL 的任务和训练时间等方面的详细对比。
表1:USB 与 TorchSSL 框架的任务和训练时间对比
(2)为了提高训练效率,研究员们将预训练的 vision Transformer 引入 SSL,而不是从头训练 ResNets。具体而言,研究员们发现在不影响性能的情况下使用预训练模型可以大大减少训练迭代次数(例如,将 CV 任务的训练迭代次数从100万步减少到20万步)。
(3)为了对研究人员更加友好,研究员们开源实现了14种 SSL 算法并开源了一个模块化代码库和相关的配置文件以供研究者轻松再现 USB 报告中的结果。为了快速上手,USB 还提供了详细的文档和教程。此外,USB 还提供了 pip 包以供使用者直接调用 SSL 算法。研究员们承诺未来会在 USB 中不断加入新的算法(例如不平衡半监督算法等)和更多更具挑战性的数据集。表2展示了 USB 中已支持的算法和模块。
表2:USB 中已支持的算法和模块
半监督学习通过利用大量无标签数据来训练更精确、更鲁棒的模型,在未来有着重要的研究和应用价值。微软亚洲研究院的研究员们期待通过 USB 这一工作,能够予力学术界和工业界在半监督学习领域取得更大的进展。
文中关于视觉,任务的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《USB:首个将视觉、语言和音频分类任务进行统一的半监督分类学习基准》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- Windows 11 Insider Preview Build 22572 让你可以直接访问文件资源管理器的旧菜单,增加了两个股票应用程序

- 下一篇
- 解锁 iPhone 快捷方式的力量:提示和技巧
-
- 淡然的萝莉
- 太给力了,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢楼主分享文章!
- 2023-06-15 12:28:30
-
- 文艺的路人
- 很详细,码起来,感谢老哥的这篇技术文章,我会继续支持!
- 2023-06-08 01:28:03
-
- 快乐的宝贝
- 这篇文章真是及时雨啊,太全面了,很棒,码起来,关注师傅了!希望师傅能多写科技周边相关的文章。
- 2023-06-05 04:40:26
-
- 舒服的小懒猪
- 这篇博文出现的刚刚好,太细致了,真优秀,收藏了,关注作者了!希望作者能多写科技周边相关的文章。
- 2023-05-27 17:19:00
-
- 标致的镜子
- 这篇技术贴真及时,大佬加油!
- 2023-05-22 09:11:07
-
- 科技周边 · 人工智能 | 18分钟前 |
- 东风日产N7首批销量:超半数选顶配
- 307浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 10分钟DeepSeek玩法!古风插画配阴阳文案,流量暴涨10倍!
- 151浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 解锁通灵义码高阶技巧,提升工作效率秘诀
- 344浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- LiblibAI携手ShakkerLabs推出多语言视觉文本渲染框架
- 447浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 2025上海车展今日开幕千企参展百款新车首发
- 116浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 即梦ai音频同步调整攻略声画对齐操作指南
- 253浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- AI证件照未来发展趋势预测
- 447浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 通灵义码高阶技巧,秘诀提升工作效率
- 485浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 23次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 21次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 34次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 34次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 56次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览