AI去除马赛克,可还行?
科技周边不知道大家是否熟悉?今天我将给大家介绍《AI去除马赛克,可还行?》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!
哈喽,大家好。
你有没有想过用 AI 技术去除马赛克?
仔细想想这个问题还挺难的,因为我们之前使用的 AI 技术,不管是人脸识别还是OCR识别,起码人工能识别出来。但如果给你一张打上马赛克的图片,你能把它复原吗?
显然是很难的。如果人都无法复原,又怎能教会计算机去复原呢?
还记得前几天我写的一篇《用AI生成头像》文章吗。在那篇文章中,我们训练了一个DCGAN模型,它可以从任意随机数生成一个图像。
随机数作为像素生成的噪声图
模型从随机数生成正常头像
DCGAN包含生成器模型和判别器模型两个模型组成,生成器模型的作用是从一组随机数生成一个图片,图片与训练样本越接近越好,从而骗过判别器模型,而判别器模型则要不断提高鉴别能力,防止生成器模型生成的图片蒙混过关。
如果我们把上述生成器模型的输入由随机数改成带有马赛克的图片,输出则是不带马赛克的图片。是不是就可以训练出一个去除马赛克的模型了。
接下来,跟大家分享下如何训练去除马赛克模型,然后再分享一个现成的工具,大家可以下载下来直接用,试试效果。
1. Pix2pix + CycleGAN
这里我们不用上面介绍的DCGAN,而是用Pix2pix和CycleGAN两个更强大的模型,分别来训练。
Pix2pix是基于GAN的图像翻译算法,从马赛克图片到正常图片,本质上跟一种语言到另一种语言的转换类似,都是翻译的过程。
Pix2pix模型翻译
而CycleGAN的实现的效果,简单来说就是将不同域之间的图像进行转换,而本身的形状保持不变。
CycleGAN模型
文章为我们提供了数据集和完整的训练过程,能够帮助我们以较低的成本训练模型。
首先,下载数据集
数据集
共 654M。
然后,下载Paddle预训练模型
预训练模型
最后,分别训练Pix2pix和CycleGAN模型。
Pix2pix 模型
python gan/infer.py
--init_model output/pix2pix/checkpoints/110/
--dataset_dir /home/aistudio/
--image_size 256
--n_samples 1
--crop_size 256
--model_net Pix2pix
--net_G unet_256
--test_list /home/aistudio/test_list.txt
--output ./infer_result/pix2pix/
CycleGAN 模型
python gan/infer.py
--init_model output/cyclegan/checkpoints/48/
--dataset_dir /home/aistudio/
--image_size 256
--n_samples 1
--crop_size 256
--input_style A
--test_list /home/aistudio/test_list.txt
--model_net CycleGAN
--net_G resnet_9block
--g_base_dims 32
--output ./infer_result/cyclegan/
训练完后,大家可以运行gan/infer.py文件,对比这两种模型去除马赛克的效果。
2. 现成工具
如果你不想自己训练模型,这里给大家分享现成的项目,它也是基于语义分割以及图像翻译,参考了Pix2pix和CycleGAN。
项目地址:https://github.com/HypoX64/DeepMosaics/blob/master/README_CN.md
对于Windows用户,作者提供了包含GUI界面的免安装软件包。
UI界面
前面我们说过,这种技术还是比较难的,所以大家不要有太高预期。这里发下实际的去除效果。
打码
去码
效果还是可以的,只不过没有想象中那么完美,大家可以下载运行试试。
以上就是《AI去除马赛克,可还行?》的详细内容,更多关于AI,图片,DCGAN的资料请关注golang学习网公众号!

- 上一篇
- 别怪ChatGPT,AI黑客攻击早已开始

- 下一篇
- AI如何让董宇辉不下班?
-
- 隐形的流沙
- 这篇文章真及时,太全面了,很棒,收藏了,关注楼主了!希望楼主能多写科技周边相关的文章。
- 2023-05-13 10:51:43
-
- 甜美的苗条
- 受益颇多,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢作者大大分享技术贴!
- 2023-05-08 01:17:38
-
- 无聊的画笔
- 这篇技术文章出现的刚刚好,师傅加油!
- 2023-05-02 18:01:47
-
- 开心的棒棒糖
- 太详细了,码起来,感谢楼主的这篇文章,我会继续支持!
- 2023-05-02 16:30:49
-
- 科技周边 · 人工智能 | 9分钟前 |
- LangGraph打造WhatsAppAI助手教程
- 174浏览 收藏
-
- 科技周边 · 人工智能 | 35分钟前 | 辅助驾驶 理想L系列 征程6M ADPro ATL全天候激光雷达
- 理想L系列智能焕新版发布,地平线6M赋能!
- 295浏览 收藏
-
- 科技周边 · 人工智能 | 57分钟前 |
- 蔚来ES6新车5月10日预订开启各地展车已到
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 小米SU7第24万台下线仅13个月,惊人速度!
- 463浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 28次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 26次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 26次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 30次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 42次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览