当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 基于深度学习的Deepfake检测综述

基于深度学习的Deepfake检测综述

来源:51CTO.COM 2023-04-28 10:39:04 0浏览 收藏

golang学习网今天将给大家带来《基于深度学习的Deepfake检测综述》,感兴趣的朋友请继续看下去吧!以下内容将会涉及到等等知识点,如果你是正在学习科技周边或者已经是大佬级别了,都非常欢迎也希望大家都能给我建议评论哈~希望能帮助到大家!

深度学习 (DL) 已成为计算机科学中最具影响力的领域之一,直接影响着当今人类生活和社会。与历史上所有其他技术创新一样,深度学习也被用于一些违法的行为。Deepfakes 就是这样一种深度学习应用,在过去的几年里已经进行了数百项研究,发明和优化各种使用 AI 的 Deepfake 检测,本文主要就是讨论如何对 Deepfake 进行检测。

基于深度学习的Deepfake检测综述

为了应对Deepfake,已经开发出了深度学习方法以及机器学习(非深度学习)方法来检测 。深度学习模型需要考虑大量参数,因此需要大量数据来训练此类模型。这正是 DL 方法与非 DL 方法相比具有更高性能和准确结果的原因。

什么是 Deepfake 检测

大多数 Deepfake 生成器都会在 Deepfake 的过程中留下留下一些痕迹。Deepfake 视频中的这些变化可以归类为空间不一致:视频的各个帧内发生的不兼容和时间不一致:视频帧序列中出现的不兼容特征 。

空间不一致包括面部区域与视频帧的背景不兼容、分辨率变化以及部分渲染的器官和皮肤纹理(可能无法正确渲染面部的所有人类特征)。大多数常见的 Deepfake 生成器无法渲染眨眼和牙齿等特征。并且有事会使用白色条带代替静止帧上肉眼甚至可以看到的牙齿 (下图)。

时间不一致包括异常眨眼、头部姿势、面部动作以及视频帧序列中的亮度变化。

deepfake 生成器留下的空间和时间这些痕迹都可以通过由深度神经网络 (DNN) 制成的 deepfake 检测器来识别。我们熟悉的生成对抗网络(GANs)在deepfake 的生成器中的广泛应用挑战了造假检测和生成之间的平衡。

Deepfake检测

Deepfake 检测器是二元分类系统,可判断输入数字媒体是真还是假。Deepfake 检测不是由单个类似黑盒的模块执行的,而是由几个其他模块和步骤组成,它们共同作用以提供检测结果。Deepfake检测中的常见步骤如下[2]。

  • Deepfake 数字媒体的输入。
  • 预处理包括人脸检测和增强。
  • 处理后的帧的特征提取。
  • 分类/检测。
  • 输出图像的真实性。

典型的基于 DL 的 Deepfake 检测器包含 3 个主要组件来执行上述任务。

  • 预处理模块。
  • 特征提取模块。
  • 评估器模块(深度学习分类器模型)。

接下来将详细解释主要步骤:数据预处理、特征提取和检测/分类过程。

数据预处理

在数据收集阶段之后,数据应该在用于 Deepfake 检测的训练和测试步骤之前进行预处理。数据预处理是使用可用的库自动完成的,例如 OpenCV python 、MTCNN 和YOLO 等。

数据增强在提高练 Deepfake 检测器的性能中也起着至关重要的作用。可以应用诸如重新缩放(拉伸)、剪切映射、缩放增强、旋转、亮度变化和水平/垂直翻转等增强技术以增加数据集的泛化性 [3]。

数据预处理的第一步是从视频剪辑中提取单个帧。提取帧后需要从提取的视频帧中检测人脸。由于面部区域经常出现异常,因此仅选择面部区域有助于特征提取模型仅关注感兴趣区域(ROI),从而节省了用于全帧扫描的计算成本。一旦检测到面部区域,就会从帧的其余背景中裁剪它们,并按照一系列步骤使它们可用于模型训练和测试。裁剪面部区域的另一个原因是使模型的所有输入图像都具有相同的大小。

特征提取

上一步预处理的帧将会发送到特征提取器。大多数特征提取器都是基于卷积神经网络(CNN)的。最近的一些研究证明了胶囊网络在特征提取过程中应用的有效性和效率的提高,这是一个新趋势。

特征提取器提取预处理视频帧上可用的空间特征。特征提取能够提取视觉特征、局部特征/面部标志,如眼睛、鼻子、嘴巴的位置、嘴形的动态、眨眼等生物特征。然后将提取的特征向量发送到 分类器网络输出决策。

分类

用于分类的深度学习模型通常被称为Deepfake检测器的骨干。顾名思义,分类网络负责Deepfake检测管道中最重要的任务:即分类并确定输入视频是否是Deepfake的概率。大多数分类器都是二元分类器,其中Deepfakes输出为(0),原始帧输出为(1)。

分类器又是另一个卷积层(CNN)或类似的深度学习架构,如LSTM或ViT。分类模型的实际功能根据使用的DNN而异。例如在特征提取器模块中提取的眨眼特征可以被分类模块中的LSTM模块使用,以确定帧眨眼模式的时间不一致性,并据此判断输入是否是Deepfake[3]。在大多数情况下, Deepfake 检测器中最后一层为全连接层。由于卷积层的输出表示数据的高级特征,这些输出被展平并连接到单个输出层以产生最终决策。

总结

在过去的几年里,Deepfake 的创建和检测都出现了显着发展。与非深度学习方法相比,由于结果的准确性,使用深度学习技术进行 Deepfake 检测的相关研究也有很大的进步。CNN、RNN、ViT 和胶囊网络等深度神经网络架构广泛用于 Deepfake 检测器的实现。常见的 Deepfake 检测管道由数据预处理模块、基于 CNN 的特征提取器和分类模块组成。

此外,Deepfake 检测对 Deepfake 生成器在 Deepfake 上留下的痕迹有很大的依赖性。由于目前基于 GAN 的 Deepfake 生成器能够以最小的不一致性合成更真实的 Deepfake,因此必须开发新的方法来优化 Deepfake 检测。基于深度集成学习技术的 Deepfake 检测方法可以被认为是对抗 Deepfake 的现代和综合方法 [4]。尽管如此,有效且高效的 Deepfake 检测器的空缺仍然存在。

文中关于机器学习,深度学习,Deepfake的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《基于深度学习的Deepfake检测综述》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
一次只要0.003美元,比人类便宜20倍!ChatGPT让数据标注者危矣一次只要0.003美元,比人类便宜20倍!ChatGPT让数据标注者危矣
上一篇
一次只要0.003美元,比人类便宜20倍!ChatGPT让数据标注者危矣
Apple 发布带有 Siri Fix 的 HomePod 15.4.1 软件
下一篇
Apple 发布带有 Siri Fix 的 HomePod 15.4.1 软件
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    7次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    7次使用
  • AI音乐实验室:一站式AI音乐创作平台,助力音乐创作
    AI音乐实验室
    AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
    6次使用
  • SEO标题PixPro:AI驱动网页端图像处理平台,提升效率的终极解决方案
    PixPro
    SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
    6次使用
  • EasyMusic.ai:零门槛AI音乐生成平台,专业级输出助力全场景创作
    EasyMusic
    EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
    9次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码