当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > ST-P3:端到端时空特征学习的自动驾驶视觉方法

ST-P3:端到端时空特征学习的自动驾驶视觉方法

来源:51CTO.COM 2023-04-24 08:10:13 0浏览 收藏

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《ST-P3:端到端时空特征学习的自动驾驶视觉方法》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

arXiv论文“ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning“,22年7月,作者来自上海交大、上海AI实验室、加州圣地亚哥分校和京东公司的北京研究院。

ST-P3:端到端时空特征学习的自动驾驶视觉方法

提出一种时空特征学习方案,可以同时为感知、预测和规划任务提供一组更具代表性的特征,称为ST-P3。具体而言,提出一种以自车为中心对齐(egocentric-aligned)的累积技术,在感知BEV转换之前保留3-D空间中的几何信息;作者设计一种双路(dual pathway )模型,将过去的运动变化考虑在内,用于未来的预测;引入一个基于时域的细化单元,补偿为规划的基于视觉元素识别。源代码、模型和协议详细信息开源https://github.com/OpenPerceptionX/ST-P3.

开创性的LSS方法从多视图摄像机中提取透视特征,通过深度估计将其提升到3D,并融合到BEV空间。两个视图之间的特征转换,其潜深度预测至关重要。

将二维平面信息提升到三维需要附加维度,即适合三维几何自主驾驶任务的深度。为了进一步改进特征表示,自然要将时域信息合并到框架中,因为大多数场景的任务是视频源。

如图描述ST- P3总体框架:具体来说,给定一组周围的摄像机视频,将其输入主干生成初步的前视图特征。执行辅助深度估计将2D特征转换到3D空间。以自车为中心对齐累积方案,首先将过去的特征对齐到当前视图坐标系。然后在三维空间中聚合当前和过去的特征,在转换到BEV表示之前保留几何信息。除了常用的预测时域模型外,通过构建第二条路径来解释过去的运动变化,性能得到进一步提升。这种双路径建模确保了更强的特征表示,推断未来的语义结果。为了实现轨迹规划的最终目标,整合网络早期的特征先验知识。设计了一个细化模块,在不存在高清地图的情况下,借助高级命令生成最终轨迹。

ST-P3:端到端时空特征学习的自动驾驶视觉方法

如图是感知的以自我为中心对齐累计方法。(a) 利用深度估计将当前时间戳处的特征提升到3D,并在对齐后合并到BEV特征;(b-c)将先前帧的3D特征与当前帧视图对齐,并与所有过去和当前状态融合,从而增强特征表示。

ST-P3:端到端时空特征学习的自动驾驶视觉方法

如图是用于预测的双路模型:(i) 潜码是来自特征图的分布;(ii iii)路a结合了不确定性分布,指示未来的多模态,而路b从过去的变化中学习,有助于路a的信息进行补偿。

ST-P3:端到端时空特征学习的自动驾驶视觉方法

作为最终目标,需要规划一条安全舒适的轨迹,到达目标点。这个运动规划器对一组不同的轨迹进行采样,并选择一个最小化学习成本函数的轨迹。然而,通过一个时域模型来整合目标(target)点和交通灯的信息,加上额外的优化步骤。

如图是为规划的先验知识集成和细化:总体成本图包括两个子成本。使用前视特征进一步重新定义最小成本轨迹,从摄像机输入中聚合基于视觉的信息。

ST-P3:端到端时空特征学习的自动驾驶视觉方法

惩罚具有较大横向加速度、急动或曲率的轨迹。希望这条轨迹能够有效地到达目的地,因此向前推进的轨迹将奖励。然而,上述成本项不包含通常由路线地图提供的目标(target)信息。采用高级命令,包括前进、左转和右转,并且只根据相应的命令评估轨迹。

此外,交通信号灯对SDV至关重要,通过GRU网络优化轨迹。用编码器模块的前摄像头特征初始化隐藏状态,并用成本项的每个采样点作为输入。

实验结果如下:

ST-P3:端到端时空特征学习的自动驾驶视觉方法

ST-P3:端到端时空特征学习的自动驾驶视觉方法

ST-P3:端到端时空特征学习的自动驾驶视觉方法

ST-P3:端到端时空特征学习的自动驾驶视觉方法

ST-P3:端到端时空特征学习的自动驾驶视觉方法

终于介绍完啦!小伙伴们,这篇关于《ST-P3:端到端时空特征学习的自动驾驶视觉方法》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
什么是文本分类?什么是文本分类?
上一篇
什么是文本分类?
iPhone 15 Pro Max 打破智能手机最薄边框的记录
下一篇
iPhone 15 Pro Max 打破智能手机最薄边框的记录
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    20次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    18次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    32次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    33次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    56次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码