当前位置:首页 > 文章列表 > 文章 > python教程 > 线性回归溢出问题怎么解决

线性回归溢出问题怎么解决

2025-08-31 22:07:04 0浏览 收藏

**线性回归数值溢出怎么解决?Python从零实现避坑指南** 本文针对Python开发者在从零实现线性回归时遇到的数值溢出问题,提供详细的解决方案。文章深入分析了导致溢出的原因,即原始数据范围过大,导致计算过程中数值超出计算机表示范围。核心解决方法在于**特征缩放**,通过归一化或标准化等方法将特征值和目标值缩放到合适的区间,例如[0, 1]。文中提供了修改后的代码示例,展示了如何通过特征缩放有效避免`RuntimeWarning: overflow encountered`错误,确保线性回归模型稳定训练并获得合理结果。此外,还强调了选择合适的缩放方法、缩放测试数据以及调整学习率的重要性,助您彻底解决线性回归中的数值溢出问题。

解决线性回归实现中的数值溢出问题

本文旨在帮助开发者解决在Python中从零实现线性回归时遇到的数值溢出问题。通过分析问题代码,我们将探讨导致溢出的原因,并提供有效的解决方案,确保模型能够稳定训练并获得合理的结果。核心在于数据预处理,特别是特征缩放,以避免计算过程中出现过大的数值。

线性回归中的数值溢出

在使用梯度下降法训练线性回归模型时,可能会遇到RuntimeWarning: overflow encountered 错误。这种错误通常是由于在计算过程中产生了过大的数值,超出了计算机所能表示的范围。具体来说,在计算假设函数、代价函数或更新参数时,如果特征值或目标值过大,就容易导致数值溢出。

问题分析

原始代码中,特征值和目标值的范围较大(特征值从0到1000,目标值从0到200)。在计算hypothesis(假设函数)和cost_function(代价函数)时,这些较大的数值经过多次乘法和加法运算,很容易导致数值溢出。此外,在更新参数时,特征矩阵的转置与误差向量相乘,也可能加剧溢出问题。

解决方案:特征缩放

解决数值溢出的关键在于对特征和目标值进行缩放,将其范围缩小到一个合适的区间,例如[0, 1]或[-1, 1]。常用的缩放方法包括:

  1. 归一化(Normalization): 将数据缩放到[0, 1]区间。

    x_normalized = (x - x.min()) / (x.max() - x.min())
  2. 标准化(Standardization): 将数据缩放到均值为0,标准差为1的分布。

    x_standardized = (x - x.mean()) / x.std()

在本例中,简单的除以最大值即可将数据缩放到0到1之间。

代码示例

以下是修改后的代码,通过对特征和目标值进行缩放,有效避免了数值溢出:

import numpy as np

class LinearRegression:

    def __init__(
    self, 
    features: np.ndarray[np.float64],
    targets: np.ndarray[np.float64],
    ) -> None:
        self.features = np.concatenate((np.ones((features.shape[0], 1)), features), axis=1)
        self.targets = targets
        self.params = np.random.randn(features.shape[1] + 1)
        self.num_samples = features.shape[0]
        self.num_feats = features.shape[1]
        self.costs = []

    def hypothesis(self) -> np.ndarray[np.float64]:
        return np.dot(self.features, self.params)

    def cost_function(self) -> np.float64:
        pred_vals = self.hypothesis()
        return (1 / (2 * self.num_samples)) * np.dot((pred_vals - self.targets).T, pred_vals - self.targets)

    def update(self, alpha: np.float64) -> None:
        self.params = self.params - (alpha / self.num_samples) * (self.features.T @ (self.hypothesis() - self.targets))

    def gradientDescent(self, alpha: np.float64, threshold: np.float64, max_iter: int) -> None:
        converged = False
        counter = 0
        while not converged:
            counter += 1
            curr_cost = self.cost_function()
            self.costs.append(curr_cost)
            self.update(alpha)
            new_cost = self.cost_function()
            if abs(new_cost - curr_cost) < threshold:
                converged = True
            if counter > max_iter:
                converged = True

# 使用缩放后的数据
regr = LinearRegression(features=np.linspace(0, 1000, 200, dtype=np.float64).reshape((20, 10))/1000, targets=np.linspace(0, 200, 20, dtype=np.float64)/1000)
regr.gradientDescent(0.1, 1e-3, 1e+3)
print(regr.cost_function())

注意事项

  • 选择合适的缩放方法: 不同的数据集可能适合不同的缩放方法。需要根据数据的分布情况选择合适的缩放方法。
  • 缩放测试数据: 在使用训练好的模型进行预测时,需要对测试数据也进行相同的缩放,以保证预测结果的准确性。
  • 学习率的选择: 特征缩放后,可能需要调整学习率alpha的值,以获得更好的收敛效果。

总结

在实现线性回归时,数值溢出是一个常见的问题。通过对特征和目标值进行缩放,可以有效地避免数值溢出,保证模型的稳定训练。同时,需要注意选择合适的缩放方法,并对测试数据进行相同的缩放。此外,学习率的选择也需要根据具体情况进行调整。通过以上方法,可以成功解决线性回归实现中的数值溢出问题,并获得准确的预测结果。

到这里,我们也就讲完了《线性回归溢出问题怎么解决》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

HTML进度条实现教程详解HTML进度条实现教程详解
上一篇
HTML进度条实现教程详解
HTML动态计算:结合JavaScript实现output标签输出
下一篇
HTML动态计算:结合JavaScript实现output标签输出
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    600次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    559次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    587次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    607次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    583次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码