Python爬虫开发流程全解析
怎么入门文章编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《Python爬虫开发步骤详解》,涉及到,有需要的可以收藏一下
实现网络爬虫的关键步骤为:分析目标网站结构、发送请求获取数据、解析页面内容、存储有用信息。首先明确要爬取的网站及内容,如新闻标题或商品价格,并检查页面HTML结构;接着使用requests库发送GET请求,注意添加headers和延时避免被封;然后用BeautifulSoup或XPath解析HTML提取所需数据;最后将数据保存为文本、CSV或存入数据库,根据需求选择合适方式。
要实现一个网络爬虫,Python 是个非常合适的选择。它有丰富的库支持,操作起来也不算太难。关键点在于:分析目标网站结构、发送请求获取数据、解析页面内容、存储有用信息。下面具体来说说怎么一步步做。

确定目标网站和抓取内容
在写代码之前,先得清楚你要爬的是哪个网站,想拿什么数据。比如是新闻标题、商品价格还是评论内容。这一步看似简单,但其实很关键——你得先知道要“抓什么”,才能决定后续用什么方式去“抓”。

- 打开浏览器,访问目标网址,看看你想提取的内容是在 HTML 哪一部分。
- 可以右键点击页面元素,选择“检查”来查看对应的 HTML 标签结构。
- 注意有些网站会动态加载内容(比如通过 JavaScript),这时候直接 requests 可能拿不到完整数据,需要考虑 selenium 或者找接口。
发送请求获取网页内容
这一步主要靠 requests
库完成,它是 Python 中最常用的发起 HTTP 请求的工具之一。
基本流程如下:

- 使用
requests.get(url)
向目标网站发送 GET 请求 - 检查返回状态码是否为 200,确认请求成功
- 获取响应内容,通常是 HTML 页面或者 JSON 数据
import requests url = 'https://example.com' response = requests.get(url) if response.status_code == 200: html_content = response.text
注意:
- 有些网站会检测爬虫行为,加 headers 模拟浏览器访问是个常见办法
- 不要频繁请求同一个网站,避免被封 IP,可以适当加
time.sleep()
延迟
解析页面并提取数据
拿到 HTML 内容后,下一步就是从中提取你想要的数据。常用的方法有两种:
- BeautifulSoup:适合小规模项目,学习成本低
- XPath + lxml:效率更高,适合复杂结构或大批量数据
举个例子,如果你用 BeautifulSoup 提取所有 标签的链接:
from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, 'html.parser') links = [a['href'] for a in soup.find_all('a', href=True)]
建议新手从 BeautifulSoup 入手,熟悉之后再尝试更高效的方案。
存储爬取到的数据
最后一步就是把数据保存下来,常见的做法有:
- 写入文本文件(如 .txt)
- 保存为 CSV 或 Excel 文件
- 存入数据库(如 MySQL、MongoDB)
如果是简单的结构化数据,CSV 是不错的选择。可以用 pandas
来处理:
import pandas as pd df = pd.DataFrame(data_list) df.to_csv('output.csv', index=False)
根据实际需求选合适的存储方式,不用一上来就整数据库,除非数据量真的很大。
基本上就这些。步骤不复杂,但每个环节都有一些细节需要注意,特别是反爬策略和页面结构变化的问题,得多留心。
今天关于《Python爬虫开发流程全解析》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

- 上一篇
- HTML表格优化:6种移动端响应式方法

- 下一篇
- 电脑开机广告怎么关?彻底清除方法
-
- 文章 · python教程 | 2分钟前 | 性能优化 大数据处理 PySpark ApacheSpark DataFrameAPI
- PySpark大数据处理入门教程
- 374浏览 收藏
-
- 文章 · python教程 | 6分钟前 |
- GPT-4Vision图片错误及修复方法
- 260浏览 收藏
-
- 文章 · python教程 | 12分钟前 |
- Python实现PDF签名方法详解
- 187浏览 收藏
-
- 文章 · python教程 | 29分钟前 | Python 负数处理 几何平均数 scipy.stats.gmean 零值处理
- Python如何计算几何平均数?
- 296浏览 收藏
-
- 文章 · python教程 | 48分钟前 | Python 趋势 季节性 时间序列分解 seasonal_decompose
- Python时间序列分解与趋势分析详解
- 347浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- Python手势识别实战教程
- 126浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python连接MongoDB实战教程
- 345浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python__exit__异常捕获技巧
- 472浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python图像识别教程:OpenCV深度学习实战
- 483浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- UP简历
- UP简历,一款免费在线AI简历生成工具,助您快速生成专业个性化简历,提升求职竞争力。3分钟快速生成,AI智能优化,多样化排版,免费导出PDF。
- 6次使用
-
- 字觅网
- 字觅网,专注正版字体授权,为创作者、设计师和企业提供多样化字体选择,满足您的创作、设计和排版需求,保障版权合法性。
- 6次使用
-
- Style3D AI
- Style3D AI,浙江凌迪数字科技打造,赋能服装箱包行业设计创作、商品营销、智能生产。AI创意设计助力设计师图案设计、服装设计、灵感挖掘、自动生成版片;AI智能商拍助力电商运营生成主图模特图、营销短视频。
- 8次使用
-
- Fast3D模型生成器
- Fast3D模型生成器,AI驱动的3D建模神器,无需注册,图像/文本快速生成高质量模型,8秒完成,适用于游戏开发、教学、创作等。免费无限次生成,支持.obj导出。
- 6次使用
-
- 扣子-Space(扣子空间)
- 深入了解字节跳动推出的通用型AI Agent平台——扣子空间(Coze Space)。探索其双模式协作、强大的任务自动化、丰富的插件集成及豆包1.5模型技术支撑,覆盖办公、学习、生活等多元应用场景,提升您的AI协作效率。
- 27次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览