当前位置:首页 > 文章列表 > 文章 > python教程 > Python推荐系统:协同过滤算法全解析

Python推荐系统:协同过滤算法全解析

2025-07-20 10:36:19 0浏览 收藏

目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《Python实现推荐系统:协同过滤算法详解》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~

协同过滤推荐系统可通过Python的scikit-surprise库实现;具体步骤包括:1. 安装库并准备“用户-物品-评分”格式数据;2. 使用KNN算法构建模型,选择基于用户或物品的相似度计算方式;3. 训练模型并进行推荐;4. 注意冷启动、稀疏矩阵、性能优化和评估指标等问题。

Python怎样实现推荐系统?协同过滤算法实践

推荐系统在如今的互联网产品中几乎是标配,像电商、视频平台、音乐App这些地方都能看到它的影子。如果你用Python做点小项目或者想了解背后的原理,协同过滤是个不错的起点。

Python怎样实现推荐系统?协同过滤算法实践

什么是协同过滤?

简单来说,协同过滤(Collaborative Filtering)是根据用户和物品之间的互动行为来推荐内容的一种方法。比如你在某视频网站上点赞了几个科技类视频,系统就可能认为你对这类内容感兴趣,然后给你推荐类似的东西。

Python怎样实现推荐系统?协同过滤算法实践

协同过滤主要分两种:

  • 基于用户的协同过滤:找和你兴趣相似的用户,看看他们喜欢什么。
  • 基于物品的协同过滤:找你喜欢过的物品,再看看哪些其他物品也经常被同一群人喜欢。

实际应用中,这两种方式都很常见,有时候也会结合使用。

Python怎样实现推荐系统?协同过滤算法实践

怎么用Python实现?

要在Python里动手实现一个简单的协同过滤推荐系统,最常用的是用scikit-surprise库,它封装好了很多经典的推荐算法,包括SVD、KNN等。

先安装一下:

pip install scikit-surprise

数据准备

你可以自己构造一个评分矩阵,也可以用现成的数据集,比如MovieLens的小型数据集。

假设你有一个这样的表格:

用户ID物品ID评分
11015
11023
21014
.........

这个结构就是标准的“用户-物品-评分”格式。

使用Surprise构建模型

代码大概长这样:

from surprise import Dataset, Reader, KNNBasic
from surprise.trainset import Trainset

# 假设你的数据是一个DataFrame,列名分别是 'userID', 'itemID', 'rating'
data = Dataset.load_builtin('ml-100k')  # 或者你自己构造的数据
trainset = data.build_full_trainset()

sim_options = {
    'name': 'cosine',
    'user_based': True  # True表示基于用户,False表示基于物品
}

model = KNNBasic(sim_options=sim_options)
model.fit(trainset)

# 给用户1推荐物品
uid = trainset.to_inner_uid(1)
preds = model.get_neighbors(uid, k=10)

这段代码的意思是,我们用K近邻算法,计算用户之间的相似度(或物品之间的相似度),然后找出最相近的10个用户或物品。

实践中的几个注意点

  • 冷启动问题:新用户或新物品没有历史记录,推荐效果会很差。这个问题很难避免,只能通过引入辅助信息(如标签、描述文本)来缓解。
  • 稀疏矩阵处理:现实中大多数用户只评过少量物品,评分矩阵非常稀疏,这时候可以考虑降维或者使用矩阵分解方法,比如SVD。
  • 性能优化:当用户和物品数量很大时,每次计算相似度会很慢,可以用离线计算+缓存的方式解决。
  • 评估指标:可以用RMSE、MAE来衡量预测评分的准确性,也可以用召回率、覆盖率等指标看推荐多样性。

推荐系统其实不复杂但容易忽略细节

如果你只是做个demo级别的东西,用上面的方法已经够用了。但如果要上线或用于真实业务场景,还需要考虑更多因素,比如实时性、扩展性、多目标推荐等。

总之,协同过滤是入门推荐系统的不错选择,而Python生态提供了足够丰富的工具让你快速实践。只要理解了基本思路,剩下的就是慢慢调参、优化的过程了。

基本上就这些,动手试试吧!

理论要掌握,实操不能落!以上关于《Python推荐系统:协同过滤算法全解析》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

GolangRPC框架对比:gRPC、Thrift与Twirp性能评测GolangRPC框架对比:gRPC、Thrift与Twirp性能评测
上一篇
GolangRPC框架对比:gRPC、Thrift与Twirp性能评测
Python孤立森林异常检测教程
下一篇
Python孤立森林异常检测教程
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 扣子空间(Coze Space):字节跳动通用AI Agent平台深度解析与应用
    扣子-Space(扣子空间)
    深入了解字节跳动推出的通用型AI Agent平台——扣子空间(Coze Space)。探索其双模式协作、强大的任务自动化、丰富的插件集成及豆包1.5模型技术支撑,覆盖办公、学习、生活等多元应用场景,提升您的AI协作效率。
    8次使用
  • 蛙蛙写作:AI智能写作助手,提升创作效率与质量
    蛙蛙写作
    蛙蛙写作是一款国内领先的AI写作助手,专为内容创作者设计,提供续写、润色、扩写、改写等服务,覆盖小说创作、学术教育、自媒体营销、办公文档等多种场景。
    11次使用
  • AI代码助手:Amazon CodeWhisperer,高效安全的代码生成工具
    CodeWhisperer
    Amazon CodeWhisperer,一款AI代码生成工具,助您高效编写代码。支持多种语言和IDE,提供智能代码建议、安全扫描,加速开发流程。
    25次使用
  • 畅图AI:AI原生智能图表工具 | 零门槛生成与高效团队协作
    畅图AI
    探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
    52次使用
  • TextIn智能文字识别:高效文档处理,助力企业数字化转型
    TextIn智能文字识别平台
    TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
    61次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码