Pandas宽表转长表教程详解
本文详细介绍了如何使用Python Pandas库中的`lreshape`函数,将包含重复列模式的宽表数据转换为更易于分析的长表数据格式。针对数据分析中常见的宽表结构,如`id_mXX`和`mprice`成对出现的情况,文章深入讲解了`pandas.lreshape`函数的用法,包括如何动态选择列以及应对Pandas自动重命名列的情况。通过清晰的代码示例和步骤解析,本文旨在帮助读者掌握使用`lreshape`函数解决复杂数据重塑问题的技巧,提升数据处理效率,为后续的数据分析和可视化奠定坚实的基础。

问题背景与挑战
在数据分析和处理中,我们经常会遇到一种特殊的宽表数据格式。这种格式的特点是存在多组具有相同逻辑意义但带有不同后缀的列,例如:id_m00和mprice构成一组,id_m01和mprice构成另一组,依此类推。一个典型的示例如下:
| Date | id_m00 | mprice | id_m01 | mprice |
|---|---|---|---|---|
| 01.01.2023 | aa-bb-cc | 12,05 | dd-ee-fr | 8,80 |
| 02.01.2023 | aa-dd-ee | 09,55 | ff-gg-gg | 7,50 |
这种结构在数据录入时可能很方便,但在进行聚合分析或绘制图表时却非常不便。我们通常希望将其转换为更标准化的“长格式”数据,即每行代表一个独立的观测值,所有相同类型的数据都归入一列。期望的目标格式如下:
| Date | id | mprice |
|---|---|---|
| 01.01.2023 | aa-bb-cc | 12,05 |
| 02.01.2023 | aa-dd-ee | 09,55 |
| 01.01.2023 | dd-ee-fr | 8,80 |
| 02.01.2023 | ff-gg-gg | 7,50 |
对于这种数据重塑任务,Pandas库提供了多种函数,如melt。然而,当列名模式复杂且存在重复列名时,melt函数可能无法直接达到预期效果,可能导致额外的空值列或需要复杂的后处理。在这种情况下,pandas.lreshape函数提供了一个更为优雅和直接的解决方案。
pandas.lreshape:解决方案的核心
pandas.lreshape函数专为处理具有重复列组(或称“模式化列”)的宽表数据而设计。它允许你指定如何将这些重复的列组“堆叠”起来,形成新的长格式列。其核心在于通过一个映射字典来定义哪些原始列应该合并成新的目标列。
实现步骤与代码解析
首先,我们需要模拟从Excel读取数据并创建DataFrame。值得注意的是,当Pandas读取Excel文件时,如果存在同名的列(例如多个mprice列),它会自动为重复的列名添加数字后缀,如mprice.1、mprice.2等。这种自动重命名对于我们使用lreshape非常有利,因为它使得我们可以通过模式匹配来选择所有相关的列。
import pandas as pd
import io
# 模拟从Excel读取的数据
# 假设Pandas在读取时将重复的'mprice'列自动重命名为'mprice', 'mprice.1'等
# 在实际应用中,您将使用 pd.read_excel("your_file.xlsx")
data = """Date,id_m00,mprice,id_m01,mprice.1
01.01.2023,aa-bb-cc,12,05,dd-ee-fr,8,80
02.01.2023,aa-dd-ee,09,55,ff-gg-gg,7,50
"""
# 使用io.StringIO模拟文件读取,并处理欧洲数值格式(逗号作小数分隔符)
# 注意:原始数据中12,05和09,55在csv中会被解析为两列,这里为了模拟,将逗号替换为点
# 实际Excel读取时,如果Pandas能正确识别区域设置,可能不需要手动替换
# 为了简化模拟,我们假设数据是12.05,8.80
data_corrected = """Date,id_m00,mprice,id_m01,mprice.1
01.01.2023,aa-bb-cc,12.05,dd-ee-fr,8.80
02.01.2023,aa-dd-ee,9.55,ff-gg-gg,7.50
"""
df = pd.read_csv(io.StringIO(data_corrected), sep=',')
# 将Date列转换为日期时间格式
df['Date'] = pd.to_datetime(df['Date'], format='%d.%m.%Y')
print("原始 DataFrame 结构:")
print(df)
print("\n")
# 使用lreshape重构数据
# mapping参数是一个字典,键是新的目标列名,值是包含原始列名的列表
# df.filter(like="...") 可以动态地选择所有匹配模式的列
out = pd.lreshape(
df,
{"id": df.filter(like="id_m").columns, # 匹配所有以"id_m"开头的列,合并为新的"id"列
"mprice": df.filter(like="price").columns} # 匹配所有包含"price"的列(包括mprice, mprice.1等),合并为新的"mprice"列
)
print("重构后的 DataFrame:")
print(out)代码解析:
数据读取与准备:
- 我们使用pd.read_csv(io.StringIO(data_corrected), sep=',')来模拟从CSV(或Excel)文件读取数据。在实际应用中,您会直接使用pd.read_excel("your_file.xlsx")。
- df['Date'] = pd.to_datetime(df['Date'], format='%d.%m.%Y') 将日期字符串转换为Pandas的日期时间对象,方便后续处理。
- 关键点: 当Pandas读取Excel文件时,如果原始数据中有多个名为mprice的列,它会自动将它们重命名为mprice, mprice.1, mprice.2等。这个特性是lreshape能够高效工作的基础。
pd.lreshape函数:
- df: 这是我们要重塑的DataFrame。
- mapping: 这是一个字典,定义了如何将宽格式的列映射到长格式的新列。
- 键 ("id", "mprice") 是我们希望在输出DataFrame中拥有的新列的名称。
- 值 (df.filter(like="id_m").columns, df.filter(like="price").columns) 是一个包含原始DataFrame中所有相关列名的列表。
- df.filter(like="id_m").columns: 这是一个非常实用的Pandas功能,它会返回DataFrame中所有列名中包含“id_m”字符串的列。这确保了无论是id_m00、id_m01还是id_m46,都会被自动选中并归入新的id列。
- df.filter(like="price").columns: 同理,这会选择所有列名中包含“price”字符串的列,包括原始的mprice以及Pandas自动重命名后的mprice.1、mprice.2等,并将它们合并到新的mprice列中。
注意事项
- 列名约定: lreshape的强大之处在于它能够处理具有系统性命名模式的列。确保您的原始数据列名具有可识别的模式(例如,所有ID列都以id_m开头,所有价格列都包含price)。
- Pandas自动重命名: 了解Pandas在读取具有重复列名的Excel文件时,会自动添加数字后缀(如mprice.1)的行为至关重要。这使得filter(like=...)方法能够优雅地捕获所有相关列。
- 数据类型: 在重塑数据后,请检查新生成的列(如mprice)的数据类型是否正确。如果原始数据中的数字是文本格式(例如,使用逗号作为小数分隔符),您可能需要在读取数据时使用decimal=','参数,或者在重塑后进行类型转换。
- 固定列: 对于像Date这样不需要重塑但需要保留的列,lreshape会自动将其作为固定列保留,并在重塑后的数据中重复显示。
总结
pandas.lreshape是处理具有重复列组的宽表数据并将其转换为长格式的强大工具。与melt相比,它在处理这种特定模式时提供了更直接和简洁的语法。通过灵活运用mapping参数和df.filter()等动态列选择方法,您可以高效地完成复杂的数据重塑任务,为后续的数据分析和可视化奠定坚实的基础。掌握lreshape将显著提升您在Python中处理复杂表格数据的能力。
本篇关于《Pandas宽表转长表教程详解》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
CSSbackground-sizecover与contain区别解析
- 上一篇
- CSSbackground-sizecover与contain区别解析
- 下一篇
- CSS文字蒙版融合背景技巧分享
-
- 文章 · python教程 | 18分钟前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- Python索引怎么用,元素如何查找定位
- 407浏览 收藏
-
- 文章 · python教程 | 49分钟前 | break else continue 无限循环 PythonWhile循环
- Pythonwhile循环详解与使用技巧
- 486浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python类型错误调试方法详解
- 129浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 函数与方法有何不同?详解解析
- 405浏览 收藏
-
- 文章 · python教程 | 1小时前 | docker Python Dockerfile 官方Python镜像 容器安装
- Docker安装Python步骤详解教程
- 391浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- DjangoJWT刷新策略与页面优化技巧
- 490浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- pandas缺失值处理技巧与方法
- 408浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- TF变量零初始化与优化器关系解析
- 427浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python字符串与列表反转技巧
- 126浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 错误处理 AssertionError 生产环境 assert语句
- Python断言失败解决方法详解
- 133浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3202次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3415次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3445次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4553次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3823次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

