Python稀疏矩阵优化技巧:scipy.sparse高效用法
今天golang学习网给大家带来了《Python稀疏数据处理技巧:scipy.sparse矩阵优化方法》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~
稀疏矩阵能节省内存和提升运算效率,因为它们只存储非零元素及位置信息。1. 稀疏数据是指大部分元素为零的数据结构,普通数组存储效率低下;2. Scipy.sparse提供多种格式,如CSR适合行操作,CSC适合列操作,COO适合构造阶段,LIL适合逐行构建;3. 创建方式包括使用coo_matrix、csr_matrix等函数或从NumPy数组转换而来;4. 使用建议包括选择合适格式、避免频繁转换、利用稀疏特性运算、保存加载优化。
在Python中处理稀疏数据时,如果直接使用普通数组或矩阵存储,会浪费大量内存和计算资源。这时候就要用到 scipy.sparse
模块提供的稀疏矩阵结构。它能有效节省空间、提升运算效率,尤其适合像文本处理、推荐系统等高维稀疏场景。

为什么需要稀疏矩阵?
稀疏数据是指大部分元素为零的数据结构。例如,在一个用户-商品评分矩阵中,每个用户只对极少数商品评分,其余都是空值(即0)。如果我们用普通的二维数组来表示这样的数据,90%以上的空间可能都在存0,非常低效。

这时,稀疏矩阵的出现就是为了解决这个问题:它只保存非零元素及其位置信息,从而大幅减少内存占用,并且一些特定操作还能更快完成。
常见的稀疏矩阵格式有哪些?
scipy.sparse
提供了多种稀疏矩阵类型,各有适用场景:

CSR (Compressed Sparse Row)
适合高效的行切片和算术运算,常用于机器学习库如 scikit-learn 的输入格式。CSC (Compressed Sparse Column)
类似于 CSR,但按列压缩,适合列操作较多的情况。COO (Coordinate Format)
简单直观,保存三元组 (row, col, value),适合构造阶段使用。LIL (List of Lists)
支持逐行构建稀疏矩阵,修改方便,但不适合做数学运算。
不同格式之间可以互相转换(如 .tocsr()
、.tocsc()
),建议先用 COO 或 LIL 构建,再转成 CSR/CSC 做运算。
如何创建和转换稀疏矩阵?
创建稀疏矩阵最常见的方式是使用 scipy.sparse
提供的函数:
from scipy.sparse import coo_matrix, csr_matrix # 使用 COO 格式创建 row = [0, 1, 2] col = [1, 2, 0] data = [10, 20, 30] sparse_matrix = coo_matrix((data, (row, col)), shape=(3, 3)) # 转换为 CSR 格式 csr_mat = sparse_matrix.tocsr()
也可以从 NumPy 数组转换而来:
import numpy as np from scipy.sparse import csr_matrix dense = np.array([[0, 1, 0], [0, 0, 2], [3, 0, 0]]) sparse = csr_matrix(dense)
⚠️ 注意:不要频繁修改稀疏矩阵的内容,尤其是 CSR/CSC 格式,效率很低。建议修改时先转成 LIL 或 COO。
实际使用中的优化建议
- 选择合适的格式:根据后续操作选择最合适的稀疏格式。比如训练模型前一般转为 CSR。
- 避免频繁转换:格式转换虽然简单,但不是免费的,尽量在初始化后定好格式。
- 利用稀疏特性进行运算:很多线性代数操作在稀疏矩阵上可以直接调用,如点乘、加法等,效率远高于稠密矩阵。
- 保存与加载:可以用
scipy.io
中的savemat
和loadmat
保存为.npz
文件,节省磁盘空间。
举个例子,两个 CSR 矩阵相乘:
result = matrix_a.dot(matrix_b)
只要两者都是 CSR 格式,这个操作就能高效完成,而如果是稠密矩阵,计算量会大很多。
基本上就这些。用好 scipy.sparse
,不仅能节省内存,还能让程序跑得更快,特别是在处理大规模数据时,是个很实用的工具。
好了,本文到此结束,带大家了解了《Python稀疏矩阵优化技巧:scipy.sparse高效用法》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

- 上一篇
- JavaScript数组分组技巧全解析

- 下一篇
- 时间选择器怎么加到HTML表格?
-
- 文章 · python教程 | 1分钟前 |
- Python代码混淆技巧:AST模块实战解析
- 337浏览 收藏
-
- 文章 · python教程 | 12分钟前 |
- Python图像处理:Pillow库高级技巧解析
- 158浏览 收藏
-
- 文章 · python教程 | 18分钟前 |
- Python制作数据透视表全攻略
- 338浏览 收藏
-
- 文章 · python教程 | 44分钟前 |
- Python中sum的作用与使用方法详解
- 226浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中len是什么意思?len函数用法详解
- 151浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python进度条实现方法,tqdm库使用详解
- 373浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 用SymPy解方程与表达式简化技巧
- 115浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonlambda用法与匿名函数技巧
- 497浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python生成二维码:qrcode库使用教程
- 107浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 畅图AI
- 探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
- 27次使用
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 34次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 31次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 30次使用
-
- Aifooler
- AI Fooler是一款免费在线AI音频处理工具,无需注册安装,即可快速实现人声分离、伴奏提取。适用于音乐编辑、视频制作、练唱素材等场景,提升音频创作效率。
- 35次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览