当前位置:首页 > 文章列表 > Golang > Go问答 > Golearn 模型对自变量(预测变量)和目标(预测)是隐含的

Golearn 模型对自变量(预测变量)和目标(预测)是隐含的

来源:Golang技术栈 2023-04-15 14:41:31 0浏览 收藏

怎么入门Golang编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《Golearn 模型对自变量(预测变量)和目标(预测)是隐含的》,涉及到golang,有需要的可以收藏一下

问题内容

我正在用 Go 学习机器学习。我正在探索 Go 中的 Golearn 包,以获得 ML 支持。我对 model.fit 和 model.predict 函数的实现方式感到非常困惑。

例如,在来自Golearn 存储库的 Knn 分类器的示例实现中:

    rawData, err := base.ParseCSVToInstances("../datasets/iris_headers.csv", true)
    
    cls := knn.NewKnnClassifier("euclidean", "linear", 2)

    trainData, testData := base.InstancesTrainTestSplit(rawData, 0.50)
    cls.Fit(trainData)

    predictions, err := cls.Predict(testData)

我很困惑哪个是模型的 x 和 y。如何有选择地传入预测变量并进行预测?我几乎被互联网文章冻结了,没有提供任何线索。

我是 Golang ML 开发人员的新手。在 Go 中有过 Web 和数据库工作的经验。我在 python 中编写 ML 模型。最近我发现 GO 在数据处理方面速度更快,适合 ML 应用,同时速度比 python 快。我渴望对此作出解释。如果没有,一个不太复杂但有足够 ML 支持的 Go 库也可以。

正确答案

golearn->knn实现 k 最近邻算法。它是由

  • 将 csv 文件解析为矩阵

  • (Predict函数) 使用不同算法计算向量之间的距离

    • 欧几里得
    • 曼哈顿
    • 余弦

在执行此步骤时,所有 非数字字段都将被删除 。非数字字段被假定为该模型正在训练的标签。

  • 类别/标签或Attributes定义在csv, 在预测列表中返回,一对形式的值(index,predicted Attribute)

我如何有选择地传入预测变量并预测

knn您可以通过将 csv 中的预测目标标记为非整数值来做到这一点。例如 ( Iris-setosa, Iris-versicolor)。


线性回归

你可以使用AddClassAttribute(),这个方法是在DenseInstancesstruct 上定义的,它是base.ParseCSVToInstances()方法的输出。

这样做的代码看起来像

   instances, err := base.ParseCSVToInstances("../examples/datasets/exams.csv", true) // true: means first line of csv is headers.
   
   attrArray:=instances.AllAttributes() 
   instances.SetClassAttribute(attrArray[4])//setting final column as class attribute, note that there cannot be more than one class attribute for linear regression.
   trainData, testData := base.InstancesTrainTestSplit(instances, 0.1) 
   lr := NewLinearRegression()
   err := lr.Fit(instances)
   if err!=nil{
      // error handling
   }
   predictions, err := lr.Predict(testData)
   if err!=nil{
      // error handling
   }

警告:-> 在线性回归给出的测试文件中,所有这些都没有完成。我不会声称上述方法是分配回归目标的正确方法或最佳方法。

这是一种可能的方式。它成为Fit()线性回归函数的候选者,这是该模型的计算发生的地方。Predict()函数仅将有限的线性回归系数集相乘并将该值存储为预测。

今天带大家了解了golang的相关知识,希望对你有所帮助;关于Golang的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:Golang技术栈 如有侵犯,请联系study_golang@163.com删除
在单独的 go 例程中重置计时器在单独的 go 例程中重置计时器
上一篇
在单独的 go 例程中重置计时器
如何在 golang 中为 exec.command 添加空格
下一篇
如何在 golang 中为 exec.command 添加空格
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3186次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3397次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3429次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4535次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3807次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码