PyTorch模型导出ONNX及Runtime推理攻略
本文详解PyTorch模型导出ONNX格式及使用ONNX Runtime进行推理的完整流程。 许多开发者需要将PyTorch训练的模型部署到其他环境,ONNX作为开放标准,解决了跨框架互操作性问题。文章通过代码示例演示了如何使用`torch.onnx.export`导出模型,并重点讲解了使用ONNX Runtime进行推理时,需将输入数据转换为NumPy数组以避免运行时错误,确保模型部署的顺利进行,并提供两种ONNX Runtime加载和运行模型的方法,方便开发者快速上手。
pytorch模型导出为onnx并进行推理
本文将详细介绍如何使用torch.onnx.export导出pytorch模型到onnx格式,以及如何使用onnx runtime进行推理。
许多开发者在使用pytorch训练模型后,希望能够将其部署到其他环境中,例如移动端或服务器端。这时,onnx (open neural network exchange) 格式就发挥了重要作用。onnx 是一种开放的标准,允许不同框架之间互操作。torch.onnx.export 函数可以将pytorch模型导出为onnx格式。然而,导出后的onnx模型如何使用呢?
以下代码展示了使用torch.onnx.export导出一个简单的pytorch模型:
import torch
class summodule(torch.nn.module):
def forward(self, x):
return torch.sum(x, dim=1)
torch.onnx.export(
summodule(),
(torch.ones(2, 2),),
"onnx.pb",
input_names=["x"],
output_names=["sum"]
)这段代码导出一个名为onnx.pb的onnx模型文件。 该模型接收一个形状为(2, 2)的张量作为输入,并计算其每一行的和作为输出。
接下来,我们需要使用onnx runtime加载并运行这个模型。 直接使用pytorch的tensor作为onnx runtime的输入是错误的。onnx runtime 期望的是numpy数组。
错误的代码示例:
import onnxruntime
import torch
resnet_onnx = onnxruntime.inferencesession("onnx.pb")
x = torch.ones(2, 2)
inputs = {resnet_onnx.get_inputs()[0].name: x}
resnet_onnx.run(none, inputs)这段代码会抛出runtimeerror: input must be a list of dictionaries or a single numpy array for input 'x'的错误。
正确的代码示例:
import onnxruntime
import numpy
import torch
resnet_onnx = onnxruntime.inferencesession("onnx.pb")
x = numpy.ones((2, 2), dtype=numpy.float32)
inputs = {resnet_onnx.get_inputs()[0].name: x}
print(resnet_onnx.run(none, inputs))通过将输入数据类型从torch.tensor更改为numpy.ndarray,并指定数据类型为numpy.float32,我们解决了这个问题。 numpy.ones((2, 2), dtype=numpy.float32) 创建了一个形状为(2, 2)的numpy数组,其元素都为1.0,且数据类型为32位浮点数。 这与onnx模型的预期输入相匹配。 这使得我们可以成功运行onnx模型并得到结果。
另一种使用onnx runtime加载并运行模型的方法:
import onnxruntime as ort
import numpy as np
sess = ort.InferenceSession("onnx.pb")
input_data = np.ones((2, 2)).astype("float32")
output_data = sess.run(None, {"x": input_data})[0]
print(output_data)此方法同样使用了numpy数组作为输入,并成功运行了模型。 需要注意的是,输入数据的形状和数据类型必须与导出onnx模型时指定的输入相匹配。
以上就是《PyTorch模型导出ONNX及Runtime推理攻略》的详细内容,更多关于的资料请关注golang学习网公众号!
如何用CSS打造搜索框和轮播图的酷炫渐变背景?
- 上一篇
- 如何用CSS打造搜索框和轮播图的酷炫渐变背景?
- 下一篇
- 网页表格布局技巧:高效实现样式
-
- 文章 · python教程 | 6小时前 |
- Python函数返回值获取技巧
- 143浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python日志配置与使用全解析
- 208浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Numpy核心技巧实战详解第542讲
- 197浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python爬虫教程:requests+BeautifulSoup实战指南
- 437浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python语音助手开发与合成技术详解
- 224浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python如何写入CSV文件教程
- 399浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python修改列名方法:columns实用教程
- 395浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Pythonround函数四舍五入详解
- 220浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- asyncio优雅取消任务树方法详解
- 230浏览 收藏
-
- 文章 · python教程 | 9小时前 | Python 分支结构
- Python分支结构有几种类型?
- 266浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python接口系统学第254讲:原理与实战解析
- 128浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python语法解析与常见错误总结
- 382浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3694次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3961次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3903次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 5076次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 4274次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

