Pandas按条件及邻行生成新列技巧
欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《Pandas根据条件和邻行创建新列方法》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

1. 问题背景与挑战
在数据处理中,我们经常需要根据特定条件创建新的数据列。一个常见的场景是,如果某一列的值满足某个条件,新列就取自当前行的另一列值;否则,新列的值需要从其上方(或下方)最近的满足条件的行中获取。这种“依赖于相邻行”的逻辑,尤其是在存在连续多行不满足条件时,如果采用传统的循环或简单的移位操作,往往效率低下且难以正确处理。
例如,考虑以下DataFrame:
import pandas as pd
data = {
'Colonne 1': ['MTN_LI2', 'MTN_IRU', 'MTN_ACE', 'MTN_IME', 'RIPP7', 'CA_SOT', 'CA_OTI', 'CNW00', 'BSNTF', 'RIPNJ'],
'Dimension 1': ['Indicator', 'Indicator', 'Indicator', 'Indicator', 'Organisation', 'Indicator', 'Indicator', 'Organisation', 'Organisation', 'Organisation']
}
df = pd.DataFrame(data)
print(df)原始DataFrame df 如下所示:
Colonne 1 Dimension 1 0 MTN_LI2 Indicator 1 MTN_IRU Indicator 2 MTN_ACE Indicator 3 MTN_IME Indicator 4 RIPP7 Organisation 5 CA_SOT Indicator 6 CA_OTI Indicator 7 CNW00 Organisation 8 BSNTF Organisation 9 RIPNJ Organisation
我们的目标是创建一列 new,其逻辑如下:
- 如果 Dimension 1 的值为 'Organisation',则 new 列取当前行 Colonne 1 的值。
- 如果 Dimension 1 的值不是 'Organisation',则 new 列取其下方最近的、Dimension 1 为 'Organisation' 的行的 Colonne 1 值。如果下方没有,则保持为空。
2. 核心解决方案:Series.where 与 Series.bfill/ffill
Pandas提供了Series.where()方法,它允许我们根据布尔条件选择性地保留或替换Series中的值。结合bfill()(backward fill,向后填充)或ffill()(forward fill,向前填充)方法,可以优雅地解决上述问题。
2.1 Series.where() 的应用
首先,我们使用 Series.where() 来实现条件赋值。where(cond, other=NaN) 的作用是:当 cond 为 True 时,保留原Series的值;当 cond 为 False 时,替换为 other(默认为 NaN)。
对于我们的问题,条件是 df['Dimension 1'].eq('Organisation')。我们希望当条件为真时,取 df['Colonne 1'] 的值。
# 步骤1: 应用 Series.where()
temp_series = df['Colonne 1'].where(df['Dimension 1'].eq('Organisation'))
print(temp_series)执行上述代码后,temp_series 将会是:
0 NaN 1 NaN 2 NaN 3 NaN 4 RIPP7 5 NaN 6 NaN 7 CNW00 8 BSNTF 9 RIPNJ Name: Colonne 1, dtype: object
可以看到,所有 Dimension 1 不是 'Organisation' 的行都被替换成了 NaN。
2.2 Series.bfill() 或 Series.ffill() 填充 NaN
现在,temp_series 中包含了我们需要的“标记”值(即'Organisation'对应的Colonne 1值)以及大量的 NaN。我们需要根据这些标记值来填充 NaN。
- Series.bfill() (Backward Fill): 向后填充,使用下一个有效观测值填充 NaN。这正好符合我们的需求:“取其下方最近的、Dimension 1 为 'Organisation' 的行的 Colonne 1 值”。
- Series.ffill() (Forward Fill): 向前填充,使用上一个有效观测值填充 NaN。这适用于“取其上方最近的”场景。
使用 bfill() 实现需求:
df['new'] = df['Colonne 1'].where(df['Dimension 1'].eq('Organisation')).bfill()
print(df)输出结果:
Colonne 1 Dimension 1 new 0 MTN_LI2 Indicator RIPP7 1 MTN_IRU Indicator RIPP7 2 MTN_ACE Indicator RIPP7 3 MTN_IME Indicator RIPP7 4 RIPP7 Organisation RIPP7 5 CA_SOT Indicator CNW00 6 CA_OTI Indicator CNW00 7 CNW00 Organisation CNW00 8 BSNTF Organisation BSNTF 9 RIPNJ Organisation RIPNJ
可以看到,RIPP7 成功地填充了其上方的 NaN,CNW00 填充了其上方的 NaN。这完美地解决了问题。
使用 ffill() 的替代方案(了解其不同行为):
如果你的需求是“如果 Dimension 1 的值不是 'Organisation',则 new 列取其上方最近的、Dimension 1 为 'Organisation' 的行的 Colonne 1 值”,那么应该使用 ffill():
df_ffill = df.copy() # 创建副本以展示不同结果
df_ffill['new_ffill'] = df_ffill['Colonne 1'].where(df_ffill['Dimension 1'].eq('Organisation')).ffill()
print(df_ffill)输出结果:
Colonne 1 Dimension 1 new_ffill 0 MTN_LI2 Indicator NaN 1 MTN_IRU Indicator NaN 2 MTN_ACE Indicator NaN 3 MTN_IME Indicator NaN 4 RIPP7 Organisation RIPP7 5 CA_SOT Indicator RIPP7 6 CA_OTI Indicator RIPP7 7 CNW00 Organisation CNW00 8 BSNTF Organisation BSNTF 9 RIPNJ Organisation RIPNJ
注意,使用 ffill() 时,前四行(索引0-3)因为在它们上方没有 'Organisation' 值,所以仍然是 NaN。这突出了 bfill() 和 ffill() 在填充方向上的根本区别。
3. 注意事项与总结
- 性能优势: Series.where() 和 Series.bfill() / Series.ffill() 都是高度优化的Pandas操作,它们在C语言层面实现,因此对于大型DataFrame而言,比Python循环或自定义函数要快得多。
- 初始 NaN 处理:
- 当使用 bfill() 时,如果DataFrame的起始部分(或任何连续的 NaN 块)在它们下方找不到任何非 NaN 值来填充,这些 NaN 将会保留。
- 当使用 ffill() 时,如果DataFrame的起始部分在它们上方找不到任何非 NaN 值来填充,这些 NaN 将会保留。在我们的 ffill() 示例中,前四行就是这种情况。
- 灵活性: 这种 where().fill_method() 的模式非常灵活,可以应用于各种复杂的条件填充场景。你可以根据实际需求调整 where() 的条件以及选择 bfill() 或 ffill()。
- 链式操作: Pandas的许多方法都支持链式操作,使得代码简洁易读。
通过结合 Series.where() 和 Series.bfill() 或 Series.ffill(),我们能够高效且优雅地解决Pandas中涉及条件性赋值和跨行依赖的复杂数据转换问题。这种方法是处理此类场景的推荐实践。
以上就是《Pandas按条件及邻行生成新列技巧》的详细内容,更多关于的资料请关注golang学习网公众号!
JavaScript访问对象属性的几种方式
- 上一篇
- JavaScript访问对象属性的几种方式
- 下一篇
- HTML5WebGL技术解析与3D绘图方法
-
- 文章 · python教程 | 58分钟前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 2小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 3小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3188次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3400次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3431次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4537次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3809次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

