当前位置:首页 > 文章列表 > 数据库 > MySQL > 解密MySQL 8.0 multi-valued indexes

解密MySQL 8.0 multi-valued indexes

来源:SegmentFault 2023-02-16 15:23:09 0浏览 收藏

数据库小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《解密MySQL 8.0 multi-valued indexes》带大家来了解一下解密MySQL 8.0 multi-valued indexes,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!

本文作者:叶金荣,知数堂联合创始人,MySQL DBA课程讲师。Oracle MySQL ACE,MySQL布道师。有多年MySQL及系统架构设计经验,擅长MySQL企业级应用、数据库设计、优化、故障处理等。
multi-valued indexes有什么特点。

什么是multi-valued index

MySQL 8.0.17起,InnoDB引擎新增了对JSON数据类型的多值索引,即multi-valued index。它的作用是针对JSON数据类型中,同一条记录有多个值的情况,加上索引后,根据这些值条件查询时,也可以指向同一条数据。

假设有一条数据是

{"user":"Bob","zipcode":[94477,94536]}
,意为Bob这位用户,他拥有多个邮编"94477"和"94536",这时候如果我们想对zipcode属性加索引,就可以选择使用多值索引了,在以往是不支持这个方式的。可以像下面这样创建索引:(建议在PC端或横版观看,下同)

[root@yejr.me]> CREATE INDEX zips ON t1((
CAST(data->'$.zipcode' AS UNSIGNED ARRAY)));

在本例中的多值索引实际上是采用基于CAST()的函数索引,CAST()转换后选择的数据类型除了BINARY和JSON,其他都可以支持。目前multi-valued index只针对InnoDB表中的JSON数据类型,其余场景还不支持。

multi-valued index怎么用

我们来看下一个JSON列怎么创建multi-valued index。

# 创建测试表
[root@yejr.me]> CREATE TABLE customers (
 id INT NOT NULL AUTO_INCREMENT,
 custinfo JSON,
 primary key(id)
)engine=innodb;

# 写入5条测试数据
[root@yejr.me]> INSERT INTO customers(custinfo) VALUES
('{"user":"Jack","user_id":37,"zipcode":[94582,94536]}'),
('{"user":"Jill","user_id":22,"zipcode":[94568,94507,94582]}'),
('{"user":"Bob","user_id":31,"zipcode":[94477,94507]}'),
('{"user":"Mary","user_id":72,"zipcode":[94536]}'),
('{"user":"Ted","user_id":56,"zipcode":[94507,94582]}');

# 执行查询,此时还没创建索引,需要全表扫描
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: ALL
possible_keys: NULL
          key: NULL
...
         rows: 5
     filtered: 100.00
        Extra: Using where

# 创建multi-valued index
[root@yejr.me]> ALTER TABLE customers ADD INDEX
zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

# 查看新的执行计划,可以走索引
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: range
possible_keys: zips
          key: zips
      key_len: 9
          ref: NULL
         rows: 6
     filtered: 100.00
        Extra: Using where; Using MRR

multi-valued index底层是怎么存储的

知道multi-valued index怎么用之后,再来看下它底层是怎么存储索引数据的。以上面的customers表为例,我们利用innblock和bcview工具来确认InnoDB底层是怎么存储的。

1. 先找到辅助索引page

先用innblock工具确认辅助索引zips在哪个page上。

[root@yejr.me]# innblock customers.ibd scan 16
...
===INDEX_ID:56555
level0 total block is (1)
block_no:         4,level:   0|*|
===INDEX_ID:56556
level0 total block is (1)
block_no:         5,level:   0|*|

由于数据量很小,这两个索引都只需要一个page就能放下,辅助索引keys存储在5号page上。

2. 扫描确认辅助索引数据

继续用innblock扫描辅助索引,确认有多少条数据。

[root@yejr.me]# innblock customers.ibd 5 16
...
-----Total used rows:12 used rows list(logic):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(3) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(4) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(7) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
(12) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
-----Total used rows:12 used rows list(phy):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
(3) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(4) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(7) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(12) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
...

可以看到,总共有12条记录,除去INFIMUM、SUPREMUM这两条虚拟记录,共有10条物理记录。为什么是10条记录,而不是5条记录呢,这是因为multi-valued index实际上是把每个zipcode value对都视为一天索引记录。再看一眼表数据:

[root@yejr.me]> select id, custinfo->'$.zipcode' from customers;
+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
|  2 | [94568, 94507, 94582] |
|  3 | [94477, 94507]        |
|  4 | [94536]               |
|  5 | [94507, 94582]        |
+----+-----------------------+

上面写入的5条数据中,共有10个zipcode,虽然有些zipcode是相同的,但他们对应的id值不同,因此也要分别记录索引。也就是说,

"zipcode":[94582,94536]
这里的两个整型数据,实际上在索引树中,是两条独立的数据,只不过他们都分别指向id=1这条数据。那么,这个索引实际上存储的顺序就应该是下面这样才对:

+---------+------+
| zipcode | id   |
+---------+------+
|   94477 |    3 |
|   94507 |    2 |
|   94507 |    3 |
|   94507 |    5 |
|   94536 |    1 |
|   94536 |    4 |
|   94568 |    2 |
|   94582 |    1 |
|   94582 |    2 |
|   94582 |    5 |
+---------+------+

提醒下,由于InnoDB的index extensions特性,辅助索引存储时总是包含聚集索引列值,若有两个值相同的辅助索引值,则会根据其聚集索引列值进行排序。当然了,以上也只是我们的推测,并不能实锤,直接去核对源码好像有点难度。好在可以用另一个神器bcview来查看底层数据。这里之所以没有采用innodb_space工具,是因为它对MySQL 5.7以上的版本兼容性不够好,有些场景下解析出来的可能是错误数据。

3. 用bcview工具确认结论

按照推测,zips这个索引按照逻辑顺序的话,第一条索引记录是

[94477,3]
才对,上面看到第一条逻辑记录的偏移量是216,我们来看下。

# 从上面扫描结果可知,一条记录总消耗存储空间是18字节
bcview customers.ibd 16 216 18
...
# 这里为了排版方便,我给人为折行了
current block:00000005 --对应的pageno=5
--Offset:00216 --偏移量216
--cnt bytes:18 --读取18字节
--data is:000000000001710d80000003000000400024
...

来分析下这条数据,要拆分成几段来看。

000000000001710d,8字节(BIGINT),十六进制转成十进制,就是 94477
80000003,4字节(INT),对应十进制3,也就是id=3
000000400024,record headder,6字节,忽略

这表明推测结果是正确的。

另外,如果按照物理写入顺序,则第一条数据id=1这条数据:

+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
+----+-----------------------+

这条物理记录,共产生两条辅助索引记录,我们一次性扫描出来(36字节):

bcview customers.ibd 16 126 36
...
current block:00000005
--Offset:00126
--cnt bytes:36
--data is:000000000001714880000001000000180036000000000001717680000001000000200048
...

同上,解析结果见下(存储顺序要反着看):

0000000000017148 => 94536
80000001 => id=1
000000180036
0000000000017176 => 94582
80000001 => id=1
000000200048

可以看到,确实是把JSON里的多个值拆开来,对应到聚集索引后存储每个键值。至此,我们完全搞清楚了multi-valued index的底层存储结构。

延伸阅读

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于数据库的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
为什么 select count(*) from t,在 InnoDB 引擎中比 MyISAM 慢?为什么 select count(*) from t,在 InnoDB 引擎中比 MyISAM 慢?
上一篇
为什么 select count(*) from t,在 InnoDB 引擎中比 MyISAM 慢?
类型隐式转换导致的?No,并不是
下一篇
类型隐式转换导致的?No,并不是
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码